![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximssdv | Structured version Visualization version GIF version |
Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies 𝐴 ⊆ 𝐵), deduction form. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
reximssdv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
reximssdv.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝑥 ∈ 𝐴) |
reximssdv.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝜒) |
Ref | Expression |
---|---|
reximssdv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximssdv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | |
2 | reximssdv.2 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝑥 ∈ 𝐴) | |
3 | reximssdv.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝜒) | |
4 | 2, 3 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → (𝑥 ∈ 𝐴 ∧ 𝜒)) |
5 | 4 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
6 | 5 | reximdv2 3159 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
7 | 1, 6 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-rex 3066 |
This theorem is referenced by: ttrcltr 9731 fin1a2lem6 10420 fpwwe2lem11 10656 pgpssslw 19560 efgrelexlemb 19696 lspsneq 20999 lbsextlem4 21038 neissex 23018 iscnp4 23154 nlly2i 23367 llynlly 23368 qtophmeo 23708 ovolicc2lem5 25437 itgsubst 25971 footexALT 28509 footex 28512 opphllem1 28538 irngnzply1 33301 lcfl6 40910 mapdval2N 41040 mapdpglem2 41083 hdmaprnlem10N 41269 primrootsunit1 41504 aks6d1c2 41533 pellfundglb 42227 oawordex2 42678 |
Copyright terms: Public domain | W3C validator |