MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximssdv Structured version   Visualization version   GIF version

Theorem reximssdv 3167
Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies 𝐴𝐵), deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
reximssdv.1 (𝜑 → ∃𝑥𝐵 𝜓)
reximssdv.2 ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝑥𝐴)
reximssdv.3 ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝜒)
Assertion
Ref Expression
reximssdv (𝜑 → ∃𝑥𝐴 𝜒)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem reximssdv
StepHypRef Expression
1 reximssdv.1 . 2 (𝜑 → ∃𝑥𝐵 𝜓)
2 reximssdv.2 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝑥𝐴)
3 reximssdv.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝜒)
42, 3jca 511 . . . 4 ((𝜑 ∧ (𝑥𝐵𝜓)) → (𝑥𝐴𝜒))
54ex 412 . . 3 (𝜑 → ((𝑥𝐵𝜓) → (𝑥𝐴𝜒)))
65reximdv2 3159 . 2 (𝜑 → (∃𝑥𝐵 𝜓 → ∃𝑥𝐴 𝜒))
71, 6mpd 15 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-rex 3066
This theorem is referenced by:  ttrcltr  9731  fin1a2lem6  10420  fpwwe2lem11  10656  pgpssslw  19560  efgrelexlemb  19696  lspsneq  20999  lbsextlem4  21038  neissex  23018  iscnp4  23154  nlly2i  23367  llynlly  23368  qtophmeo  23708  ovolicc2lem5  25437  itgsubst  25971  footexALT  28509  footex  28512  opphllem1  28538  irngnzply1  33301  lcfl6  40910  mapdval2N  41040  mapdpglem2  41083  hdmaprnlem10N  41269  primrootsunit1  41504  aks6d1c2  41533  pellfundglb  42227  oawordex2  42678
  Copyright terms: Public domain W3C validator