MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximssdv Structured version   Visualization version   GIF version

Theorem reximssdv 3170
Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies 𝐴𝐵), deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
reximssdv.1 (𝜑 → ∃𝑥𝐵 𝜓)
reximssdv.2 ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝑥𝐴)
reximssdv.3 ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝜒)
Assertion
Ref Expression
reximssdv (𝜑 → ∃𝑥𝐴 𝜒)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem reximssdv
StepHypRef Expression
1 reximssdv.1 . 2 (𝜑 → ∃𝑥𝐵 𝜓)
2 reximssdv.2 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝑥𝐴)
3 reximssdv.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝜒)
42, 3jca 511 . . . 4 ((𝜑 ∧ (𝑥𝐵𝜓)) → (𝑥𝐴𝜒))
54ex 412 . . 3 (𝜑 → ((𝑥𝐵𝜓) → (𝑥𝐴𝜒)))
65reximdv2 3161 . 2 (𝜑 → (∃𝑥𝐵 𝜓 → ∃𝑥𝐴 𝜒))
71, 6mpd 15 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wrex 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-rex 3068
This theorem is referenced by:  ttrcltr  9753  fin1a2lem6  10442  fpwwe2lem11  10678  pgpssslw  19646  efgrelexlemb  19782  lspsneq  21141  lbsextlem4  21180  neissex  23150  iscnp4  23286  nlly2i  23499  llynlly  23500  qtophmeo  23840  ovolicc2lem5  25569  itgsubst  26104  footexALT  28740  footex  28743  opphllem1  28769  irngnzply1  33705  weiunfr  36449  lcfl6  41482  mapdval2N  41612  mapdpglem2  41655  hdmaprnlem10N  41841  primrootsunit1  42078  aks6d1c2  42111  aks6d1c6lem5  42158  aks5lem8  42182  pellfundglb  42872  oawordex2  43315  upciclem4  48814
  Copyright terms: Public domain W3C validator