| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximssdv | Structured version Visualization version GIF version | ||
| Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies 𝐴 ⊆ 𝐵), deduction form. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| reximssdv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| reximssdv.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝑥 ∈ 𝐴) |
| reximssdv.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| reximssdv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximssdv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | |
| 2 | reximssdv.2 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝑥 ∈ 𝐴) | |
| 3 | reximssdv.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝜒) | |
| 4 | 2, 3 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → (𝑥 ∈ 𝐴 ∧ 𝜒)) |
| 5 | 4 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 6 | 5 | reximdv2 3150 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| 7 | 1, 6 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: ttrcltr 9730 fin1a2lem6 10419 fpwwe2lem11 10655 pgpssslw 19595 efgrelexlemb 19731 lspsneq 21083 lbsextlem4 21122 neissex 23065 iscnp4 23201 nlly2i 23414 llynlly 23415 qtophmeo 23755 ovolicc2lem5 25474 itgsubst 26008 footexALT 28697 footex 28700 opphllem1 28726 irngnzply1 33732 weiunfr 36485 lcfl6 41519 mapdval2N 41649 mapdpglem2 41692 hdmaprnlem10N 41878 primrootsunit1 42110 aks6d1c2 42143 aks6d1c6lem5 42190 aks5lem8 42214 pellfundglb 42908 oawordex2 43350 upciclem4 49104 |
| Copyright terms: Public domain | W3C validator |