| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximssdv | Structured version Visualization version GIF version | ||
| Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies 𝐴 ⊆ 𝐵), deduction form. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| reximssdv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| reximssdv.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝑥 ∈ 𝐴) |
| reximssdv.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| reximssdv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximssdv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | |
| 2 | reximssdv.2 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝑥 ∈ 𝐴) | |
| 3 | reximssdv.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝜒) | |
| 4 | 2, 3 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → (𝑥 ∈ 𝐴 ∧ 𝜒)) |
| 5 | 4 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 6 | 5 | reximdv2 3142 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| 7 | 1, 6 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: ttrcltr 9606 fin1a2lem6 10296 fpwwe2lem11 10532 pgpssslw 19526 efgrelexlemb 19662 lspsneq 21059 lbsextlem4 21098 neissex 23042 iscnp4 23178 nlly2i 23391 llynlly 23392 qtophmeo 23732 ovolicc2lem5 25449 itgsubst 25983 footexALT 28696 footex 28699 opphllem1 28725 irngnzply1 33704 weiunfr 36511 lcfl6 41609 mapdval2N 41739 mapdpglem2 41782 hdmaprnlem10N 41968 primrootsunit1 42200 aks6d1c2 42233 aks6d1c6lem5 42280 aks5lem8 42304 pellfundglb 42988 oawordex2 43429 upciclem4 49280 |
| Copyright terms: Public domain | W3C validator |