| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximssdv | Structured version Visualization version GIF version | ||
| Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies 𝐴 ⊆ 𝐵), deduction form. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| reximssdv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| reximssdv.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝑥 ∈ 𝐴) |
| reximssdv.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| reximssdv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximssdv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | |
| 2 | reximssdv.2 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝑥 ∈ 𝐴) | |
| 3 | reximssdv.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝜒) | |
| 4 | 2, 3 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → (𝑥 ∈ 𝐴 ∧ 𝜒)) |
| 5 | 4 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 6 | 5 | reximdv2 3144 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| 7 | 1, 6 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: ttrcltr 9676 fin1a2lem6 10365 fpwwe2lem11 10601 pgpssslw 19551 efgrelexlemb 19687 lspsneq 21039 lbsextlem4 21078 neissex 23021 iscnp4 23157 nlly2i 23370 llynlly 23371 qtophmeo 23711 ovolicc2lem5 25429 itgsubst 25963 footexALT 28652 footex 28655 opphllem1 28681 irngnzply1 33693 weiunfr 36462 lcfl6 41501 mapdval2N 41631 mapdpglem2 41674 hdmaprnlem10N 41860 primrootsunit1 42092 aks6d1c2 42125 aks6d1c6lem5 42172 aks5lem8 42196 pellfundglb 42880 oawordex2 43322 upciclem4 49162 |
| Copyright terms: Public domain | W3C validator |