Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem2 Structured version   Visualization version   GIF version

Theorem mapdpglem2 39729
Description: Lemma for mapdpg 39762. Baer p. 45, lines 1 and 2: "we have (F(x-y))* = Gt where t necessarily belongs to (Fx)*+(Fy)*." (We scope $d 𝑡𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 15-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
Assertion
Ref Expression
mapdpglem2 (𝜑 → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝜑,𝑡
Allowed substitution hints:   (𝑡)   𝑈(𝑡)   𝐻(𝑡)   𝐾(𝑡)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem mapdpglem2
StepHypRef Expression
1 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpglem.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpglem.v . . . 4 𝑉 = (Base‘𝑈)
5 mapdpglem.n . . . 4 𝑁 = (LSpan‘𝑈)
6 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
7 eqid 2736 . . . 4 (Base‘𝐶) = (Base‘𝐶)
8 mapdpglem2.j . . . 4 𝐽 = (LSpan‘𝐶)
9 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
101, 3, 9dvhlmod 39166 . . . . 5 (𝜑𝑈 ∈ LMod)
11 mapdpglem.x . . . . 5 (𝜑𝑋𝑉)
12 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
13 mapdpglem.s . . . . . 6 = (-g𝑈)
144, 13lmodvsubcl 20213 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
1510, 11, 12, 14syl3anc 1371 . . . 4 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
161, 2, 3, 4, 5, 6, 7, 8, 9, 15mapdspex 39724 . . 3 (𝜑 → ∃𝑡 ∈ (Base‘𝐶)(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
171, 6, 9lcdlmod 39648 . . . . . 6 (𝜑𝐶 ∈ LMod)
187, 8lspsnid 20300 . . . . . 6 ((𝐶 ∈ LMod ∧ 𝑡 ∈ (Base‘𝐶)) → 𝑡 ∈ (𝐽‘{𝑡}))
1917, 18sylan 581 . . . . 5 ((𝜑𝑡 ∈ (Base‘𝐶)) → 𝑡 ∈ (𝐽‘{𝑡}))
2019adantrr 715 . . . 4 ((𝜑 ∧ (𝑡 ∈ (Base‘𝐶) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))) → 𝑡 ∈ (𝐽‘{𝑡}))
21 simprr 771 . . . 4 ((𝜑 ∧ (𝑡 ∈ (Base‘𝐶) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))) → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
2220, 21eleqtrrd 2840 . . 3 ((𝜑 ∧ (𝑡 ∈ (Base‘𝐶) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))) → 𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 𝑌)})))
2316, 22, 21reximssdv 3166 . 2 (𝜑 → ∃𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 𝑌)}))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
24 mapdpglem1.p . . . . . 6 = (LSSum‘𝐶)
251, 2, 3, 4, 13, 5, 6, 9, 11, 12, 24mapdpglem1 39728 . . . . 5 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) ⊆ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
2625sseld 3925 . . . 4 (𝜑 → (𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 𝑌)})) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌})))))
2726anim1d 612 . . 3 (𝜑 → ((𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 𝑌)})) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))))
2827reximdv2 3158 . 2 (𝜑 → (∃𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 𝑌)}))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}) → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})))
2923, 28mpd 15 1 (𝜑 → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wrex 3071  {csn 4565  cfv 6458  (class class class)co 7307  Basecbs 16957  -gcsg 18624  LSSumclsm 19284  LModclmod 20168  LSpanclspn 20278  HLchlt 37406  LHypclh 38040  DVecHcdvh 39134  LCDualclcd 39642  mapdcmpd 39680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-riotaBAD 37009
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-tpos 8073  df-undef 8120  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-n0 12280  df-z 12366  df-uz 12629  df-fz 13286  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-sca 17023  df-vsca 17024  df-0g 17197  df-mre 17340  df-mrc 17341  df-acs 17343  df-proset 18058  df-poset 18076  df-plt 18093  df-lub 18109  df-glb 18110  df-join 18111  df-meet 18112  df-p0 18188  df-p1 18189  df-lat 18195  df-clat 18262  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-submnd 18476  df-grp 18625  df-minusg 18626  df-sbg 18627  df-subg 18797  df-cntz 18968  df-oppg 18995  df-lsm 19286  df-cmn 19433  df-abl 19434  df-mgp 19766  df-ur 19783  df-ring 19830  df-oppr 19907  df-dvdsr 19928  df-unit 19929  df-invr 19959  df-dvr 19970  df-drng 20038  df-lmod 20170  df-lss 20239  df-lsp 20279  df-lvec 20410  df-lsatoms 37032  df-lshyp 37033  df-lcv 37075  df-lfl 37114  df-lkr 37142  df-ldual 37180  df-oposet 37232  df-ol 37234  df-oml 37235  df-covers 37322  df-ats 37323  df-atl 37354  df-cvlat 37378  df-hlat 37407  df-llines 37554  df-lplanes 37555  df-lvols 37556  df-lines 37557  df-psubsp 37559  df-pmap 37560  df-padd 37852  df-lhyp 38044  df-laut 38045  df-ldil 38160  df-ltrn 38161  df-trl 38215  df-tgrp 38799  df-tendo 38811  df-edring 38813  df-dveca 39059  df-disoa 39085  df-dvech 39135  df-dib 39195  df-dic 39229  df-dih 39285  df-doch 39404  df-djh 39451  df-lcdual 39643  df-mapd 39681
This theorem is referenced by:  mapdpglem24  39760
  Copyright terms: Public domain W3C validator