Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem2 Structured version   Visualization version   GIF version

Theorem mapdpglem2 41652
Description: Lemma for mapdpg 41685. Baer p. 45, lines 1 and 2: "we have (F(x-y))* = Gt where t necessarily belongs to (Fx)*+(Fy)*." (We scope $d 𝑡𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 15-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
Assertion
Ref Expression
mapdpglem2 (𝜑 → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝜑,𝑡
Allowed substitution hints:   (𝑡)   𝑈(𝑡)   𝐻(𝑡)   𝐾(𝑡)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem mapdpglem2
StepHypRef Expression
1 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpglem.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpglem.v . . . 4 𝑉 = (Base‘𝑈)
5 mapdpglem.n . . . 4 𝑁 = (LSpan‘𝑈)
6 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
7 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
8 mapdpglem2.j . . . 4 𝐽 = (LSpan‘𝐶)
9 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
101, 3, 9dvhlmod 41089 . . . . 5 (𝜑𝑈 ∈ LMod)
11 mapdpglem.x . . . . 5 (𝜑𝑋𝑉)
12 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
13 mapdpglem.s . . . . . 6 = (-g𝑈)
144, 13lmodvsubcl 20828 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
1510, 11, 12, 14syl3anc 1373 . . . 4 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
161, 2, 3, 4, 5, 6, 7, 8, 9, 15mapdspex 41647 . . 3 (𝜑 → ∃𝑡 ∈ (Base‘𝐶)(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
171, 6, 9lcdlmod 41571 . . . . . 6 (𝜑𝐶 ∈ LMod)
187, 8lspsnid 20914 . . . . . 6 ((𝐶 ∈ LMod ∧ 𝑡 ∈ (Base‘𝐶)) → 𝑡 ∈ (𝐽‘{𝑡}))
1917, 18sylan 580 . . . . 5 ((𝜑𝑡 ∈ (Base‘𝐶)) → 𝑡 ∈ (𝐽‘{𝑡}))
2019adantrr 717 . . . 4 ((𝜑 ∧ (𝑡 ∈ (Base‘𝐶) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))) → 𝑡 ∈ (𝐽‘{𝑡}))
21 simprr 772 . . . 4 ((𝜑 ∧ (𝑡 ∈ (Base‘𝐶) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))) → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
2220, 21eleqtrrd 2831 . . 3 ((𝜑 ∧ (𝑡 ∈ (Base‘𝐶) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))) → 𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 𝑌)})))
2316, 22, 21reximssdv 3147 . 2 (𝜑 → ∃𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 𝑌)}))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
24 mapdpglem1.p . . . . . 6 = (LSSum‘𝐶)
251, 2, 3, 4, 13, 5, 6, 9, 11, 12, 24mapdpglem1 41651 . . . . 5 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) ⊆ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
2625sseld 3936 . . . 4 (𝜑 → (𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 𝑌)})) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌})))))
2726anim1d 611 . . 3 (𝜑 → ((𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 𝑌)})) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))))
2827reximdv2 3139 . 2 (𝜑 → (∃𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 𝑌)}))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}) → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})))
2923, 28mpd 15 1 (𝜑 → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {csn 4579  cfv 6486  (class class class)co 7353  Basecbs 17138  -gcsg 18832  LSSumclsm 19531  LModclmod 20781  LSpanclspn 20892  HLchlt 39328  LHypclh 39963  DVecHcdvh 41057  LCDualclcd 41565  mapdcmpd 41603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-nzr 20416  df-rlreg 20597  df-domn 20598  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lsatoms 38954  df-lshyp 38955  df-lcv 38997  df-lfl 39036  df-lkr 39064  df-ldual 39102  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tgrp 40722  df-tendo 40734  df-edring 40736  df-dveca 40982  df-disoa 41008  df-dvech 41058  df-dib 41118  df-dic 41152  df-dih 41208  df-doch 41327  df-djh 41374  df-lcdual 41566  df-mapd 41604
This theorem is referenced by:  mapdpglem24  41683
  Copyright terms: Public domain W3C validator