| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdpg 41685. Baer p. 45, lines 1 and 2: "we have (F(x-y))* = Gt where t necessarily belongs to (Fx)*+(Fy)*." (We scope $d 𝑡𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 15-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdpglem.s | ⊢ − = (-g‘𝑈) |
| mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
| mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| Ref | Expression |
|---|---|
| mapdpglem2 | ⊢ (𝜑 → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdpglem.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdpglem.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 3 | mapdpglem.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | mapdpglem.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | mapdpglem.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 6 | mapdpglem.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 7 | eqid 2729 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 8 | mapdpglem2.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 9 | mapdpglem.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 10 | 1, 3, 9 | dvhlmod 41089 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 11 | mapdpglem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 12 | mapdpglem.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 13 | mapdpglem.s | . . . . . 6 ⊢ − = (-g‘𝑈) | |
| 14 | 4, 13 | lmodvsubcl 20828 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| 15 | 10, 11, 12, 14 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝑉) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 15 | mapdspex 41647 | . . 3 ⊢ (𝜑 → ∃𝑡 ∈ (Base‘𝐶)(𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
| 17 | 1, 6, 9 | lcdlmod 41571 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 18 | 7, 8 | lspsnid 20914 | . . . . . 6 ⊢ ((𝐶 ∈ LMod ∧ 𝑡 ∈ (Base‘𝐶)) → 𝑡 ∈ (𝐽‘{𝑡})) |
| 19 | 17, 18 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝐶)) → 𝑡 ∈ (𝐽‘{𝑡})) |
| 20 | 19 | adantrr 717 | . . . 4 ⊢ ((𝜑 ∧ (𝑡 ∈ (Base‘𝐶) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡}))) → 𝑡 ∈ (𝐽‘{𝑡})) |
| 21 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑡 ∈ (Base‘𝐶) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡}))) → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
| 22 | 20, 21 | eleqtrrd 2831 | . . 3 ⊢ ((𝜑 ∧ (𝑡 ∈ (Base‘𝐶) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡}))) → 𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 − 𝑌)}))) |
| 23 | 16, 22, 21 | reximssdv 3147 | . 2 ⊢ (𝜑 → ∃𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 − 𝑌)}))(𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
| 24 | mapdpglem1.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐶) | |
| 25 | 1, 2, 3, 4, 13, 5, 6, 9, 11, 12, 24 | mapdpglem1 41651 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) ⊆ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
| 26 | 25 | sseld 3936 | . . . 4 ⊢ (𝜑 → (𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌}))))) |
| 27 | 26 | anim1d 611 | . . 3 ⊢ (𝜑 → ((𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) → (𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})))) |
| 28 | 27 | reximdv2 3139 | . 2 ⊢ (𝜑 → (∃𝑡 ∈ (𝑀‘(𝑁‘{(𝑋 − 𝑌)}))(𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡}) → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡}))) |
| 29 | 23, 28 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {csn 4579 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 -gcsg 18832 LSSumclsm 19531 LModclmod 20781 LSpanclspn 20892 HLchlt 39328 LHypclh 39963 DVecHcdvh 41057 LCDualclcd 41565 mapdcmpd 41603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-riotaBAD 38931 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-undef 8213 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-0g 17363 df-mre 17506 df-mrc 17507 df-acs 17509 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cntz 19214 df-oppg 19243 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-nzr 20416 df-rlreg 20597 df-domn 20598 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lvec 21025 df-lsatoms 38954 df-lshyp 38955 df-lcv 38997 df-lfl 39036 df-lkr 39064 df-ldual 39102 df-oposet 39154 df-ol 39156 df-oml 39157 df-covers 39244 df-ats 39245 df-atl 39276 df-cvlat 39300 df-hlat 39329 df-llines 39477 df-lplanes 39478 df-lvols 39479 df-lines 39480 df-psubsp 39482 df-pmap 39483 df-padd 39775 df-lhyp 39967 df-laut 39968 df-ldil 40083 df-ltrn 40084 df-trl 40138 df-tgrp 40722 df-tendo 40734 df-edring 40736 df-dveca 40982 df-disoa 41008 df-dvech 41058 df-dib 41118 df-dic 41152 df-dih 41208 df-doch 41327 df-djh 41374 df-lcdual 41566 df-mapd 41604 |
| This theorem is referenced by: mapdpglem24 41683 |
| Copyright terms: Public domain | W3C validator |