MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneq Structured version   Visualization version   GIF version

Theorem lspsneq 20384
Description: Equal spans of singletons must have proportional vectors. See lspsnss2 20267 for comparable span version. TODO: can proof be shortened? (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
lspsneq.v 𝑉 = (Base‘𝑊)
lspsneq.s 𝑆 = (Scalar‘𝑊)
lspsneq.k 𝐾 = (Base‘𝑆)
lspsneq.o 0 = (0g𝑆)
lspsneq.t · = ( ·𝑠𝑊)
lspsneq.n 𝑁 = (LSpan‘𝑊)
lspsneq.w (𝜑𝑊 ∈ LVec)
lspsneq.x (𝜑𝑋𝑉)
lspsneq.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspsneq (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌)))
Distinct variable groups:   𝑘,𝐾   0 ,𝑘   · ,𝑘   𝑘,𝑋   𝑘,𝑌
Allowed substitution hints:   𝜑(𝑘)   𝑆(𝑘)   𝑁(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem lspsneq
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lspsneq.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
2 lveclmod 20368 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
4 lspsneq.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑊)
54lmodring 20131 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ∈ Ring)
6 lspsneq.k . . . . . . . . . 10 𝐾 = (Base‘𝑆)
7 eqid 2738 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
86, 7ringidcl 19807 . . . . . . . . 9 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝐾)
93, 5, 83syl 18 . . . . . . . 8 (𝜑 → (1r𝑆) ∈ 𝐾)
104lvecdrng 20367 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑆 ∈ DivRing)
11 lspsneq.o . . . . . . . . . 10 0 = (0g𝑆)
1211, 7drngunz 20006 . . . . . . . . 9 (𝑆 ∈ DivRing → (1r𝑆) ≠ 0 )
131, 10, 123syl 18 . . . . . . . 8 (𝜑 → (1r𝑆) ≠ 0 )
14 eldifsn 4720 . . . . . . . 8 ((1r𝑆) ∈ (𝐾 ∖ { 0 }) ↔ ((1r𝑆) ∈ 𝐾 ∧ (1r𝑆) ≠ 0 ))
159, 13, 14sylanbrc 583 . . . . . . 7 (𝜑 → (1r𝑆) ∈ (𝐾 ∖ { 0 }))
1615ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → (1r𝑆) ∈ (𝐾 ∖ { 0 }))
17 lspsneq.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
18 eqid 2738 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
1917, 18lmod0vcl 20152 . . . . . . . . 9 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
20 lspsneq.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
2117, 4, 20, 7lmodvs1 20151 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (0g𝑊) ∈ 𝑉) → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
223, 19, 21syl2anc2 585 . . . . . . . 8 (𝜑 → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
2322ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
24 oveq2 7283 . . . . . . . 8 (𝑌 = (0g𝑊) → ((1r𝑆) · 𝑌) = ((1r𝑆) · (0g𝑊)))
2524adantl 482 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ((1r𝑆) · 𝑌) = ((1r𝑆) · (0g𝑊)))
26 lspsneq.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
273adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LMod)
28 lspsneq.x . . . . . . . . . 10 (𝜑𝑋𝑉)
2928adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋𝑉)
30 lspsneq.y . . . . . . . . . 10 (𝜑𝑌𝑉)
3130adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑌𝑉)
32 simpr 485 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3317, 18, 26, 27, 29, 31, 32lspsneq0b 20275 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g𝑊) ↔ 𝑌 = (0g𝑊)))
3433biimpar 478 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → 𝑋 = (0g𝑊))
3523, 25, 343eqtr4rd 2789 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → 𝑋 = ((1r𝑆) · 𝑌))
36 oveq1 7282 . . . . . . 7 (𝑗 = (1r𝑆) → (𝑗 · 𝑌) = ((1r𝑆) · 𝑌))
3736rspceeqv 3575 . . . . . 6 (((1r𝑆) ∈ (𝐾 ∖ { 0 }) ∧ 𝑋 = ((1r𝑆) · 𝑌)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
3816, 35, 37syl2anc 584 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
39 eqimss 3977 . . . . . . . . . 10 ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))
4039adantl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))
41 eqid 2738 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4217, 41, 26lspsncl 20239 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
433, 30, 42syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
4443adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
4517, 41, 26, 27, 44, 29lspsnel5 20257 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})))
4640, 45mpbird 256 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌}))
474, 6, 17, 20, 26lspsnel 20265 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌)))
4827, 31, 47syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌)))
4946, 48mpbid 231 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌))
5049adantr 481 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌))
51 simprl 768 . . . . . . 7 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗𝐾)
52 simpr 485 . . . . . . . . . . 11 ((𝑗𝐾𝑋 = (𝑗 · 𝑌)) → 𝑋 = (𝑗 · 𝑌))
5352adantl 482 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑋 = (𝑗 · 𝑌))
5433biimpd 228 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g𝑊) → 𝑌 = (0g𝑊)))
5554necon3d 2964 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑌 ≠ (0g𝑊) → 𝑋 ≠ (0g𝑊)))
5655imp 407 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → 𝑋 ≠ (0g𝑊))
5756adantr 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑋 ≠ (0g𝑊))
5853, 57eqnetrrd 3012 . . . . . . . . 9 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → (𝑗 · 𝑌) ≠ (0g𝑊))
591adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LVec)
6059ad2antrr 723 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑊 ∈ LVec)
6131ad2antrr 723 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑌𝑉)
6217, 20, 4, 6, 11, 18, 60, 51, 61lvecvsn0 20371 . . . . . . . . 9 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → ((𝑗 · 𝑌) ≠ (0g𝑊) ↔ (𝑗0𝑌 ≠ (0g𝑊))))
6358, 62mpbid 231 . . . . . . . 8 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → (𝑗0𝑌 ≠ (0g𝑊)))
6463simpld 495 . . . . . . 7 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗0 )
65 eldifsn 4720 . . . . . . 7 (𝑗 ∈ (𝐾 ∖ { 0 }) ↔ (𝑗𝐾𝑗0 ))
6651, 64, 65sylanbrc 583 . . . . . 6 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗 ∈ (𝐾 ∖ { 0 }))
6750, 66, 53reximssdv 3205 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
6838, 67pm2.61dane 3032 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
6968ex 413 . . 3 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)))
701adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑊 ∈ LVec)
71 eldifi 4061 . . . . . . . 8 (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗𝐾)
7271adantl 482 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗𝐾)
73 eldifsni 4723 . . . . . . . 8 (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗0 )
7473adantl 482 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗0 )
7530adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑌𝑉)
7617, 4, 20, 6, 11, 26lspsnvs 20376 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑗𝐾𝑗0 ) ∧ 𝑌𝑉) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))
7770, 72, 74, 75, 76syl121anc 1374 . . . . . 6 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))
7877ex 413 . . . . 5 (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})))
79 sneq 4571 . . . . . . 7 (𝑋 = (𝑗 · 𝑌) → {𝑋} = {(𝑗 · 𝑌)})
8079fveqeq2d 6782 . . . . . 6 (𝑋 = (𝑗 · 𝑌) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})))
8180biimprcd 249 . . . . 5 ((𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
8278, 81syl6 35 . . . 4 (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))))
8382rexlimdv 3212 . . 3 (𝜑 → (∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
8469, 83impbid 211 . 2 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)))
85 oveq1 7282 . . . 4 (𝑗 = 𝑘 → (𝑗 · 𝑌) = (𝑘 · 𝑌))
8685eqeq2d 2749 . . 3 (𝑗 = 𝑘 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑘 · 𝑌)))
8786cbvrexvw 3384 . 2 (∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌))
8884, 87bitrdi 287 1 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  wss 3887  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  1rcur 19737  Ringcrg 19783  DivRingcdr 19991  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LVecclvec 20364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365
This theorem is referenced by:  lspsneu  20385  mapdpglem26  39712  mapdpglem27  39713  hdmap14lem2a  39881  hdmap14lem2N  39883  prjsprellsp  40450
  Copyright terms: Public domain W3C validator