| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lspsneq.w | . . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ LVec) | 
| 2 |  | lveclmod 21106 | . . . . . . . . . 10
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | 
| 3 | 1, 2 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ LMod) | 
| 4 |  | lspsneq.s | . . . . . . . . . 10
⊢ 𝑆 = (Scalar‘𝑊) | 
| 5 | 4 | lmodring 20867 | . . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝑆 ∈ Ring) | 
| 6 |  | lspsneq.k | . . . . . . . . . 10
⊢ 𝐾 = (Base‘𝑆) | 
| 7 |  | eqid 2736 | . . . . . . . . . 10
⊢
(1r‘𝑆) = (1r‘𝑆) | 
| 8 | 6, 7 | ringidcl 20263 | . . . . . . . . 9
⊢ (𝑆 ∈ Ring →
(1r‘𝑆)
∈ 𝐾) | 
| 9 | 3, 5, 8 | 3syl 18 | . . . . . . . 8
⊢ (𝜑 → (1r‘𝑆) ∈ 𝐾) | 
| 10 | 4 | lvecdrng 21105 | . . . . . . . . 9
⊢ (𝑊 ∈ LVec → 𝑆 ∈
DivRing) | 
| 11 |  | lspsneq.o | . . . . . . . . . 10
⊢  0 =
(0g‘𝑆) | 
| 12 | 11, 7 | drngunz 20748 | . . . . . . . . 9
⊢ (𝑆 ∈ DivRing →
(1r‘𝑆)
≠ 0
) | 
| 13 | 1, 10, 12 | 3syl 18 | . . . . . . . 8
⊢ (𝜑 → (1r‘𝑆) ≠ 0 ) | 
| 14 |  | eldifsn 4785 | . . . . . . . 8
⊢
((1r‘𝑆) ∈ (𝐾 ∖ { 0 }) ↔
((1r‘𝑆)
∈ 𝐾 ∧
(1r‘𝑆)
≠ 0
)) | 
| 15 | 9, 13, 14 | sylanbrc 583 | . . . . . . 7
⊢ (𝜑 → (1r‘𝑆) ∈ (𝐾 ∖ { 0 })) | 
| 16 | 15 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g‘𝑊)) → (1r‘𝑆) ∈ (𝐾 ∖ { 0 })) | 
| 17 |  | lspsneq.v | . . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑊) | 
| 18 |  | eqid 2736 | . . . . . . . . . 10
⊢
(0g‘𝑊) = (0g‘𝑊) | 
| 19 | 17, 18 | lmod0vcl 20890 | . . . . . . . . 9
⊢ (𝑊 ∈ LMod →
(0g‘𝑊)
∈ 𝑉) | 
| 20 |  | lspsneq.t | . . . . . . . . . 10
⊢  · = (
·𝑠 ‘𝑊) | 
| 21 | 17, 4, 20, 7 | lmodvs1 20889 | . . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧
(0g‘𝑊)
∈ 𝑉) →
((1r‘𝑆)
·
(0g‘𝑊)) =
(0g‘𝑊)) | 
| 22 | 3, 19, 21 | syl2anc2 585 | . . . . . . . 8
⊢ (𝜑 →
((1r‘𝑆)
·
(0g‘𝑊)) =
(0g‘𝑊)) | 
| 23 | 22 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g‘𝑊)) → ((1r‘𝑆) ·
(0g‘𝑊)) =
(0g‘𝑊)) | 
| 24 |  | oveq2 7440 | . . . . . . . 8
⊢ (𝑌 = (0g‘𝑊) →
((1r‘𝑆)
·
𝑌) =
((1r‘𝑆)
·
(0g‘𝑊))) | 
| 25 | 24 | adantl 481 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g‘𝑊)) → ((1r‘𝑆) · 𝑌) = ((1r‘𝑆) ·
(0g‘𝑊))) | 
| 26 |  | lspsneq.n | . . . . . . . . 9
⊢ 𝑁 = (LSpan‘𝑊) | 
| 27 | 3 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LMod) | 
| 28 |  | lspsneq.x | . . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 29 | 28 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋 ∈ 𝑉) | 
| 30 |  | lspsneq.y | . . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝑉) | 
| 31 | 30 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑌 ∈ 𝑉) | 
| 32 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | 
| 33 | 17, 18, 26, 27, 29, 31, 32 | lspsneq0b 21012 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g‘𝑊) ↔ 𝑌 = (0g‘𝑊))) | 
| 34 | 33 | biimpar 477 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g‘𝑊)) → 𝑋 = (0g‘𝑊)) | 
| 35 | 23, 25, 34 | 3eqtr4rd 2787 | . . . . . 6
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g‘𝑊)) → 𝑋 = ((1r‘𝑆) · 𝑌)) | 
| 36 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑗 = (1r‘𝑆) → (𝑗 · 𝑌) = ((1r‘𝑆) · 𝑌)) | 
| 37 | 36 | rspceeqv 3644 | . . . . . 6
⊢
(((1r‘𝑆) ∈ (𝐾 ∖ { 0 }) ∧ 𝑋 = ((1r‘𝑆) · 𝑌)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)) | 
| 38 | 16, 35, 37 | syl2anc 584 | . . . . 5
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g‘𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)) | 
| 39 |  | eqimss 4041 | . . . . . . . . . 10
⊢ ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})) | 
| 40 | 39 | adantl 481 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})) | 
| 41 |  | eqid 2736 | . . . . . . . . . 10
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) | 
| 42 | 17, 41, 26 | lspsncl 20976 | . . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) | 
| 43 | 3, 30, 42 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) | 
| 44 | 43 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) | 
| 45 | 17, 41, 26, 27, 44, 29 | ellspsn5b 20994 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))) | 
| 46 | 40, 45 | mpbird 257 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌})) | 
| 47 | 4, 6, 17, 20, 26 | ellspsn 21002 | . . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ 𝐾 𝑋 = (𝑗 · 𝑌))) | 
| 48 | 27, 31, 47 | syl2anc 584 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ 𝐾 𝑋 = (𝑗 · 𝑌))) | 
| 49 | 46, 48 | mpbid 232 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗 ∈ 𝐾 𝑋 = (𝑗 · 𝑌)) | 
| 50 | 49 | adantr 480 | . . . . . 6
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) → ∃𝑗 ∈ 𝐾 𝑋 = (𝑗 · 𝑌)) | 
| 51 |  | simprl 770 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑗 ∈ 𝐾) | 
| 52 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌)) → 𝑋 = (𝑗 · 𝑌)) | 
| 53 | 52 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑋 = (𝑗 · 𝑌)) | 
| 54 | 33 | biimpd 229 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g‘𝑊) → 𝑌 = (0g‘𝑊))) | 
| 55 | 54 | necon3d 2960 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑌 ≠ (0g‘𝑊) → 𝑋 ≠ (0g‘𝑊))) | 
| 56 | 55 | imp 406 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) → 𝑋 ≠ (0g‘𝑊)) | 
| 57 | 56 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑋 ≠ (0g‘𝑊)) | 
| 58 | 53, 57 | eqnetrrd 3008 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → (𝑗 · 𝑌) ≠ (0g‘𝑊)) | 
| 59 | 1 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LVec) | 
| 60 | 59 | ad2antrr 726 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑊 ∈ LVec) | 
| 61 | 31 | ad2antrr 726 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑌 ∈ 𝑉) | 
| 62 | 17, 20, 4, 6, 11, 18, 60, 51, 61 | lvecvsn0 21112 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → ((𝑗 · 𝑌) ≠ (0g‘𝑊) ↔ (𝑗 ≠ 0 ∧ 𝑌 ≠ (0g‘𝑊)))) | 
| 63 | 58, 62 | mpbid 232 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → (𝑗 ≠ 0 ∧ 𝑌 ≠ (0g‘𝑊))) | 
| 64 | 63 | simpld 494 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑗 ≠ 0 ) | 
| 65 |  | eldifsn 4785 | . . . . . . 7
⊢ (𝑗 ∈ (𝐾 ∖ { 0 }) ↔ (𝑗 ∈ 𝐾 ∧ 𝑗 ≠ 0 )) | 
| 66 | 51, 64, 65 | sylanbrc 583 | . . . . . 6
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑗 ∈ (𝐾 ∖ { 0 })) | 
| 67 | 50, 66, 53 | reximssdv 3172 | . . . . 5
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)) | 
| 68 | 38, 67 | pm2.61dane 3028 | . . . 4
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)) | 
| 69 | 68 | ex 412 | . . 3
⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))) | 
| 70 | 1 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑊 ∈ LVec) | 
| 71 |  | eldifi 4130 | . . . . . . . 8
⊢ (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗 ∈ 𝐾) | 
| 72 | 71 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗 ∈ 𝐾) | 
| 73 |  | eldifsni 4789 | . . . . . . . 8
⊢ (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗 ≠ 0 ) | 
| 74 | 73 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗 ≠ 0 ) | 
| 75 | 30 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑌 ∈ 𝑉) | 
| 76 | 17, 4, 20, 6, 11, 26 | lspsnvs 21117 | . . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ (𝑗 ∈ 𝐾 ∧ 𝑗 ≠ 0 ) ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})) | 
| 77 | 70, 72, 74, 75, 76 | syl121anc 1376 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐾 ∖ { 0 })) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})) | 
| 78 | 77 | ex 412 | . . . . 5
⊢ (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))) | 
| 79 |  | sneq 4635 | . . . . . . 7
⊢ (𝑋 = (𝑗 · 𝑌) → {𝑋} = {(𝑗 · 𝑌)}) | 
| 80 | 79 | fveqeq2d 6913 | . . . . . 6
⊢ (𝑋 = (𝑗 · 𝑌) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))) | 
| 81 | 80 | biimprcd 250 | . . . . 5
⊢ ((𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) | 
| 82 | 78, 81 | syl6 35 | . . . 4
⊢ (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))) | 
| 83 | 82 | rexlimdv 3152 | . . 3
⊢ (𝜑 → (∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) | 
| 84 | 69, 83 | impbid 212 | . 2
⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))) | 
| 85 |  | oveq1 7439 | . . . 4
⊢ (𝑗 = 𝑘 → (𝑗 · 𝑌) = (𝑘 · 𝑌)) | 
| 86 | 85 | eqeq2d 2747 | . . 3
⊢ (𝑗 = 𝑘 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑘 · 𝑌))) | 
| 87 | 86 | cbvrexvw 3237 | . 2
⊢
(∃𝑗 ∈
(𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌)) | 
| 88 | 84, 87 | bitrdi 287 | 1
⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌))) |