MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneq Structured version   Visualization version   GIF version

Theorem lspsneq 20299
Description: Equal spans of singletons must have proportional vectors. See lspsnss2 20182 for comparable span version. TODO: can proof be shortened? (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
lspsneq.v 𝑉 = (Base‘𝑊)
lspsneq.s 𝑆 = (Scalar‘𝑊)
lspsneq.k 𝐾 = (Base‘𝑆)
lspsneq.o 0 = (0g𝑆)
lspsneq.t · = ( ·𝑠𝑊)
lspsneq.n 𝑁 = (LSpan‘𝑊)
lspsneq.w (𝜑𝑊 ∈ LVec)
lspsneq.x (𝜑𝑋𝑉)
lspsneq.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspsneq (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌)))
Distinct variable groups:   𝑘,𝐾   0 ,𝑘   · ,𝑘   𝑘,𝑋   𝑘,𝑌
Allowed substitution hints:   𝜑(𝑘)   𝑆(𝑘)   𝑁(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem lspsneq
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lspsneq.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
2 lveclmod 20283 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
4 lspsneq.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑊)
54lmodring 20046 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ∈ Ring)
6 lspsneq.k . . . . . . . . . 10 𝐾 = (Base‘𝑆)
7 eqid 2738 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
86, 7ringidcl 19722 . . . . . . . . 9 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝐾)
93, 5, 83syl 18 . . . . . . . 8 (𝜑 → (1r𝑆) ∈ 𝐾)
104lvecdrng 20282 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑆 ∈ DivRing)
11 lspsneq.o . . . . . . . . . 10 0 = (0g𝑆)
1211, 7drngunz 19921 . . . . . . . . 9 (𝑆 ∈ DivRing → (1r𝑆) ≠ 0 )
131, 10, 123syl 18 . . . . . . . 8 (𝜑 → (1r𝑆) ≠ 0 )
14 eldifsn 4717 . . . . . . . 8 ((1r𝑆) ∈ (𝐾 ∖ { 0 }) ↔ ((1r𝑆) ∈ 𝐾 ∧ (1r𝑆) ≠ 0 ))
159, 13, 14sylanbrc 582 . . . . . . 7 (𝜑 → (1r𝑆) ∈ (𝐾 ∖ { 0 }))
1615ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → (1r𝑆) ∈ (𝐾 ∖ { 0 }))
17 lspsneq.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
18 eqid 2738 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
1917, 18lmod0vcl 20067 . . . . . . . . 9 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
20 lspsneq.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
2117, 4, 20, 7lmodvs1 20066 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (0g𝑊) ∈ 𝑉) → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
223, 19, 21syl2anc2 584 . . . . . . . 8 (𝜑 → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
2322ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
24 oveq2 7263 . . . . . . . 8 (𝑌 = (0g𝑊) → ((1r𝑆) · 𝑌) = ((1r𝑆) · (0g𝑊)))
2524adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ((1r𝑆) · 𝑌) = ((1r𝑆) · (0g𝑊)))
26 lspsneq.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
273adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LMod)
28 lspsneq.x . . . . . . . . . 10 (𝜑𝑋𝑉)
2928adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋𝑉)
30 lspsneq.y . . . . . . . . . 10 (𝜑𝑌𝑉)
3130adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑌𝑉)
32 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3317, 18, 26, 27, 29, 31, 32lspsneq0b 20190 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g𝑊) ↔ 𝑌 = (0g𝑊)))
3433biimpar 477 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → 𝑋 = (0g𝑊))
3523, 25, 343eqtr4rd 2789 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → 𝑋 = ((1r𝑆) · 𝑌))
36 oveq1 7262 . . . . . . 7 (𝑗 = (1r𝑆) → (𝑗 · 𝑌) = ((1r𝑆) · 𝑌))
3736rspceeqv 3567 . . . . . 6 (((1r𝑆) ∈ (𝐾 ∖ { 0 }) ∧ 𝑋 = ((1r𝑆) · 𝑌)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
3816, 35, 37syl2anc 583 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
39 eqimss 3973 . . . . . . . . . 10 ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))
4039adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))
41 eqid 2738 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4217, 41, 26lspsncl 20154 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
433, 30, 42syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
4443adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
4517, 41, 26, 27, 44, 29lspsnel5 20172 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})))
4640, 45mpbird 256 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌}))
474, 6, 17, 20, 26lspsnel 20180 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌)))
4827, 31, 47syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌)))
4946, 48mpbid 231 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌))
5049adantr 480 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌))
51 simprl 767 . . . . . . 7 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗𝐾)
52 simpr 484 . . . . . . . . . . 11 ((𝑗𝐾𝑋 = (𝑗 · 𝑌)) → 𝑋 = (𝑗 · 𝑌))
5352adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑋 = (𝑗 · 𝑌))
5433biimpd 228 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g𝑊) → 𝑌 = (0g𝑊)))
5554necon3d 2963 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑌 ≠ (0g𝑊) → 𝑋 ≠ (0g𝑊)))
5655imp 406 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → 𝑋 ≠ (0g𝑊))
5756adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑋 ≠ (0g𝑊))
5853, 57eqnetrrd 3011 . . . . . . . . 9 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → (𝑗 · 𝑌) ≠ (0g𝑊))
591adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LVec)
6059ad2antrr 722 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑊 ∈ LVec)
6131ad2antrr 722 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑌𝑉)
6217, 20, 4, 6, 11, 18, 60, 51, 61lvecvsn0 20286 . . . . . . . . 9 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → ((𝑗 · 𝑌) ≠ (0g𝑊) ↔ (𝑗0𝑌 ≠ (0g𝑊))))
6358, 62mpbid 231 . . . . . . . 8 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → (𝑗0𝑌 ≠ (0g𝑊)))
6463simpld 494 . . . . . . 7 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗0 )
65 eldifsn 4717 . . . . . . 7 (𝑗 ∈ (𝐾 ∖ { 0 }) ↔ (𝑗𝐾𝑗0 ))
6651, 64, 65sylanbrc 582 . . . . . 6 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗 ∈ (𝐾 ∖ { 0 }))
6750, 66, 53reximssdv 3204 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
6838, 67pm2.61dane 3031 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
6968ex 412 . . 3 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)))
701adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑊 ∈ LVec)
71 eldifi 4057 . . . . . . . 8 (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗𝐾)
7271adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗𝐾)
73 eldifsni 4720 . . . . . . . 8 (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗0 )
7473adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗0 )
7530adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑌𝑉)
7617, 4, 20, 6, 11, 26lspsnvs 20291 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑗𝐾𝑗0 ) ∧ 𝑌𝑉) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))
7770, 72, 74, 75, 76syl121anc 1373 . . . . . 6 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))
7877ex 412 . . . . 5 (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})))
79 sneq 4568 . . . . . . 7 (𝑋 = (𝑗 · 𝑌) → {𝑋} = {(𝑗 · 𝑌)})
8079fveqeq2d 6764 . . . . . 6 (𝑋 = (𝑗 · 𝑌) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})))
8180biimprcd 249 . . . . 5 ((𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
8278, 81syl6 35 . . . 4 (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))))
8382rexlimdv 3211 . . 3 (𝜑 → (∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
8469, 83impbid 211 . 2 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)))
85 oveq1 7262 . . . 4 (𝑗 = 𝑘 → (𝑗 · 𝑌) = (𝑘 · 𝑌))
8685eqeq2d 2749 . . 3 (𝑗 = 𝑘 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑘 · 𝑌)))
8786cbvrexvw 3373 . 2 (∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌))
8884, 87bitrdi 286 1 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cdif 3880  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  1rcur 19652  Ringcrg 19698  DivRingcdr 19906  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280
This theorem is referenced by:  lspsneu  20300  mapdpglem26  39639  mapdpglem27  39640  hdmap14lem2a  39808  hdmap14lem2N  39810  prjsprellsp  40371
  Copyright terms: Public domain W3C validator