| Step | Hyp | Ref
| Expression |
| 1 | | lspsneq.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ LVec) |
| 2 | | lveclmod 21069 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
| 3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 4 | | lspsneq.s |
. . . . . . . . . 10
⊢ 𝑆 = (Scalar‘𝑊) |
| 5 | 4 | lmodring 20830 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝑆 ∈ Ring) |
| 6 | | lspsneq.k |
. . . . . . . . . 10
⊢ 𝐾 = (Base‘𝑆) |
| 7 | | eqid 2736 |
. . . . . . . . . 10
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 8 | 6, 7 | ringidcl 20230 |
. . . . . . . . 9
⊢ (𝑆 ∈ Ring →
(1r‘𝑆)
∈ 𝐾) |
| 9 | 3, 5, 8 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑆) ∈ 𝐾) |
| 10 | 4 | lvecdrng 21068 |
. . . . . . . . 9
⊢ (𝑊 ∈ LVec → 𝑆 ∈
DivRing) |
| 11 | | lspsneq.o |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑆) |
| 12 | 11, 7 | drngunz 20712 |
. . . . . . . . 9
⊢ (𝑆 ∈ DivRing →
(1r‘𝑆)
≠ 0
) |
| 13 | 1, 10, 12 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝑆) ≠ 0 ) |
| 14 | | eldifsn 4767 |
. . . . . . . 8
⊢
((1r‘𝑆) ∈ (𝐾 ∖ { 0 }) ↔
((1r‘𝑆)
∈ 𝐾 ∧
(1r‘𝑆)
≠ 0
)) |
| 15 | 9, 13, 14 | sylanbrc 583 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑆) ∈ (𝐾 ∖ { 0 })) |
| 16 | 15 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g‘𝑊)) → (1r‘𝑆) ∈ (𝐾 ∖ { 0 })) |
| 17 | | lspsneq.v |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑊) |
| 18 | | eqid 2736 |
. . . . . . . . . 10
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 19 | 17, 18 | lmod0vcl 20853 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod →
(0g‘𝑊)
∈ 𝑉) |
| 20 | | lspsneq.t |
. . . . . . . . . 10
⊢ · = (
·𝑠 ‘𝑊) |
| 21 | 17, 4, 20, 7 | lmodvs1 20852 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧
(0g‘𝑊)
∈ 𝑉) →
((1r‘𝑆)
·
(0g‘𝑊)) =
(0g‘𝑊)) |
| 22 | 3, 19, 21 | syl2anc2 585 |
. . . . . . . 8
⊢ (𝜑 →
((1r‘𝑆)
·
(0g‘𝑊)) =
(0g‘𝑊)) |
| 23 | 22 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g‘𝑊)) → ((1r‘𝑆) ·
(0g‘𝑊)) =
(0g‘𝑊)) |
| 24 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑌 = (0g‘𝑊) →
((1r‘𝑆)
·
𝑌) =
((1r‘𝑆)
·
(0g‘𝑊))) |
| 25 | 24 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g‘𝑊)) → ((1r‘𝑆) · 𝑌) = ((1r‘𝑆) ·
(0g‘𝑊))) |
| 26 | | lspsneq.n |
. . . . . . . . 9
⊢ 𝑁 = (LSpan‘𝑊) |
| 27 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LMod) |
| 28 | | lspsneq.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 29 | 28 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋 ∈ 𝑉) |
| 30 | | lspsneq.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 31 | 30 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑌 ∈ 𝑉) |
| 32 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
| 33 | 17, 18, 26, 27, 29, 31, 32 | lspsneq0b 20975 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g‘𝑊) ↔ 𝑌 = (0g‘𝑊))) |
| 34 | 33 | biimpar 477 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g‘𝑊)) → 𝑋 = (0g‘𝑊)) |
| 35 | 23, 25, 34 | 3eqtr4rd 2782 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g‘𝑊)) → 𝑋 = ((1r‘𝑆) · 𝑌)) |
| 36 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑗 = (1r‘𝑆) → (𝑗 · 𝑌) = ((1r‘𝑆) · 𝑌)) |
| 37 | 36 | rspceeqv 3629 |
. . . . . 6
⊢
(((1r‘𝑆) ∈ (𝐾 ∖ { 0 }) ∧ 𝑋 = ((1r‘𝑆) · 𝑌)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)) |
| 38 | 16, 35, 37 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g‘𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)) |
| 39 | | eqimss 4022 |
. . . . . . . . . 10
⊢ ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})) |
| 40 | 39 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})) |
| 41 | | eqid 2736 |
. . . . . . . . . 10
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
| 42 | 17, 41, 26 | lspsncl 20939 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 43 | 3, 30, 42 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 44 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 45 | 17, 41, 26, 27, 44, 29 | ellspsn5b 20957 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))) |
| 46 | 40, 45 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌})) |
| 47 | 4, 6, 17, 20, 26 | ellspsn 20965 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ 𝐾 𝑋 = (𝑗 · 𝑌))) |
| 48 | 27, 31, 47 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ 𝐾 𝑋 = (𝑗 · 𝑌))) |
| 49 | 46, 48 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗 ∈ 𝐾 𝑋 = (𝑗 · 𝑌)) |
| 50 | 49 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) → ∃𝑗 ∈ 𝐾 𝑋 = (𝑗 · 𝑌)) |
| 51 | | simprl 770 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑗 ∈ 𝐾) |
| 52 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌)) → 𝑋 = (𝑗 · 𝑌)) |
| 53 | 52 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑋 = (𝑗 · 𝑌)) |
| 54 | 33 | biimpd 229 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g‘𝑊) → 𝑌 = (0g‘𝑊))) |
| 55 | 54 | necon3d 2954 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑌 ≠ (0g‘𝑊) → 𝑋 ≠ (0g‘𝑊))) |
| 56 | 55 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) → 𝑋 ≠ (0g‘𝑊)) |
| 57 | 56 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑋 ≠ (0g‘𝑊)) |
| 58 | 53, 57 | eqnetrrd 3001 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → (𝑗 · 𝑌) ≠ (0g‘𝑊)) |
| 59 | 1 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LVec) |
| 60 | 59 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑊 ∈ LVec) |
| 61 | 31 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑌 ∈ 𝑉) |
| 62 | 17, 20, 4, 6, 11, 18, 60, 51, 61 | lvecvsn0 21075 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → ((𝑗 · 𝑌) ≠ (0g‘𝑊) ↔ (𝑗 ≠ 0 ∧ 𝑌 ≠ (0g‘𝑊)))) |
| 63 | 58, 62 | mpbid 232 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → (𝑗 ≠ 0 ∧ 𝑌 ≠ (0g‘𝑊))) |
| 64 | 63 | simpld 494 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑗 ≠ 0 ) |
| 65 | | eldifsn 4767 |
. . . . . . 7
⊢ (𝑗 ∈ (𝐾 ∖ { 0 }) ↔ (𝑗 ∈ 𝐾 ∧ 𝑗 ≠ 0 )) |
| 66 | 51, 64, 65 | sylanbrc 583 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) ∧ (𝑗 ∈ 𝐾 ∧ 𝑋 = (𝑗 · 𝑌))) → 𝑗 ∈ (𝐾 ∖ { 0 })) |
| 67 | 50, 66, 53 | reximssdv 3159 |
. . . . 5
⊢ (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g‘𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)) |
| 68 | 38, 67 | pm2.61dane 3020 |
. . . 4
⊢ ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)) |
| 69 | 68 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))) |
| 70 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑊 ∈ LVec) |
| 71 | | eldifi 4111 |
. . . . . . . 8
⊢ (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗 ∈ 𝐾) |
| 72 | 71 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗 ∈ 𝐾) |
| 73 | | eldifsni 4771 |
. . . . . . . 8
⊢ (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗 ≠ 0 ) |
| 74 | 73 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗 ≠ 0 ) |
| 75 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑌 ∈ 𝑉) |
| 76 | 17, 4, 20, 6, 11, 26 | lspsnvs 21080 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ (𝑗 ∈ 𝐾 ∧ 𝑗 ≠ 0 ) ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})) |
| 77 | 70, 72, 74, 75, 76 | syl121anc 1377 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐾 ∖ { 0 })) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})) |
| 78 | 77 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))) |
| 79 | | sneq 4616 |
. . . . . . 7
⊢ (𝑋 = (𝑗 · 𝑌) → {𝑋} = {(𝑗 · 𝑌)}) |
| 80 | 79 | fveqeq2d 6889 |
. . . . . 6
⊢ (𝑋 = (𝑗 · 𝑌) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))) |
| 81 | 80 | biimprcd 250 |
. . . . 5
⊢ ((𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| 82 | 78, 81 | syl6 35 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))) |
| 83 | 82 | rexlimdv 3140 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| 84 | 69, 83 | impbid 212 |
. 2
⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))) |
| 85 | | oveq1 7417 |
. . . 4
⊢ (𝑗 = 𝑘 → (𝑗 · 𝑌) = (𝑘 · 𝑌)) |
| 86 | 85 | eqeq2d 2747 |
. . 3
⊢ (𝑗 = 𝑘 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑘 · 𝑌))) |
| 87 | 86 | cbvrexvw 3225 |
. 2
⊢
(∃𝑗 ∈
(𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌)) |
| 88 | 84, 87 | bitrdi 287 |
1
⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌))) |