Step | Hyp | Ref
| Expression |
1 | | lspsneq.w |
. . . . . . . . . 10
β’ (π β π β LVec) |
2 | | lveclmod 20709 |
. . . . . . . . . 10
β’ (π β LVec β π β LMod) |
3 | 1, 2 | syl 17 |
. . . . . . . . 9
β’ (π β π β LMod) |
4 | | lspsneq.s |
. . . . . . . . . 10
β’ π = (Scalarβπ) |
5 | 4 | lmodring 20471 |
. . . . . . . . 9
β’ (π β LMod β π β Ring) |
6 | | lspsneq.k |
. . . . . . . . . 10
β’ πΎ = (Baseβπ) |
7 | | eqid 2732 |
. . . . . . . . . 10
β’
(1rβπ) = (1rβπ) |
8 | 6, 7 | ringidcl 20076 |
. . . . . . . . 9
β’ (π β Ring β
(1rβπ)
β πΎ) |
9 | 3, 5, 8 | 3syl 18 |
. . . . . . . 8
β’ (π β (1rβπ) β πΎ) |
10 | 4 | lvecdrng 20708 |
. . . . . . . . 9
β’ (π β LVec β π β
DivRing) |
11 | | lspsneq.o |
. . . . . . . . . 10
β’ 0 =
(0gβπ) |
12 | 11, 7 | drngunz 20326 |
. . . . . . . . 9
β’ (π β DivRing β
(1rβπ)
β 0
) |
13 | 1, 10, 12 | 3syl 18 |
. . . . . . . 8
β’ (π β (1rβπ) β 0 ) |
14 | | eldifsn 4789 |
. . . . . . . 8
β’
((1rβπ) β (πΎ β { 0 }) β
((1rβπ)
β πΎ β§
(1rβπ)
β 0
)) |
15 | 9, 13, 14 | sylanbrc 583 |
. . . . . . 7
β’ (π β (1rβπ) β (πΎ β { 0 })) |
16 | 15 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ (πβ{π}) = (πβ{π})) β§ π = (0gβπ)) β (1rβπ) β (πΎ β { 0 })) |
17 | | lspsneq.v |
. . . . . . . . . 10
β’ π = (Baseβπ) |
18 | | eqid 2732 |
. . . . . . . . . 10
β’
(0gβπ) = (0gβπ) |
19 | 17, 18 | lmod0vcl 20493 |
. . . . . . . . 9
β’ (π β LMod β
(0gβπ)
β π) |
20 | | lspsneq.t |
. . . . . . . . . 10
β’ Β· = (
Β·π βπ) |
21 | 17, 4, 20, 7 | lmodvs1 20492 |
. . . . . . . . 9
β’ ((π β LMod β§
(0gβπ)
β π) β
((1rβπ)
Β·
(0gβπ)) =
(0gβπ)) |
22 | 3, 19, 21 | syl2anc2 585 |
. . . . . . . 8
β’ (π β
((1rβπ)
Β·
(0gβπ)) =
(0gβπ)) |
23 | 22 | ad2antrr 724 |
. . . . . . 7
β’ (((π β§ (πβ{π}) = (πβ{π})) β§ π = (0gβπ)) β ((1rβπ) Β·
(0gβπ)) =
(0gβπ)) |
24 | | oveq2 7413 |
. . . . . . . 8
β’ (π = (0gβπ) β
((1rβπ)
Β·
π) =
((1rβπ)
Β·
(0gβπ))) |
25 | 24 | adantl 482 |
. . . . . . 7
β’ (((π β§ (πβ{π}) = (πβ{π})) β§ π = (0gβπ)) β ((1rβπ) Β· π) = ((1rβπ) Β·
(0gβπ))) |
26 | | lspsneq.n |
. . . . . . . . 9
β’ π = (LSpanβπ) |
27 | 3 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (πβ{π}) = (πβ{π})) β π β LMod) |
28 | | lspsneq.x |
. . . . . . . . . 10
β’ (π β π β π) |
29 | 28 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (πβ{π}) = (πβ{π})) β π β π) |
30 | | lspsneq.y |
. . . . . . . . . 10
β’ (π β π β π) |
31 | 30 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (πβ{π}) = (πβ{π})) β π β π) |
32 | | simpr 485 |
. . . . . . . . 9
β’ ((π β§ (πβ{π}) = (πβ{π})) β (πβ{π}) = (πβ{π})) |
33 | 17, 18, 26, 27, 29, 31, 32 | lspsneq0b 20616 |
. . . . . . . 8
β’ ((π β§ (πβ{π}) = (πβ{π})) β (π = (0gβπ) β π = (0gβπ))) |
34 | 33 | biimpar 478 |
. . . . . . 7
β’ (((π β§ (πβ{π}) = (πβ{π})) β§ π = (0gβπ)) β π = (0gβπ)) |
35 | 23, 25, 34 | 3eqtr4rd 2783 |
. . . . . 6
β’ (((π β§ (πβ{π}) = (πβ{π})) β§ π = (0gβπ)) β π = ((1rβπ) Β· π)) |
36 | | oveq1 7412 |
. . . . . . 7
β’ (π = (1rβπ) β (π Β· π) = ((1rβπ) Β· π)) |
37 | 36 | rspceeqv 3632 |
. . . . . 6
β’
(((1rβπ) β (πΎ β { 0 }) β§ π = ((1rβπ) Β· π)) β βπ β (πΎ β { 0 })π = (π Β· π)) |
38 | 16, 35, 37 | syl2anc 584 |
. . . . 5
β’ (((π β§ (πβ{π}) = (πβ{π})) β§ π = (0gβπ)) β βπ β (πΎ β { 0 })π = (π Β· π)) |
39 | | eqimss 4039 |
. . . . . . . . . 10
β’ ((πβ{π}) = (πβ{π}) β (πβ{π}) β (πβ{π})) |
40 | 39 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ (πβ{π}) = (πβ{π})) β (πβ{π}) β (πβ{π})) |
41 | | eqid 2732 |
. . . . . . . . . 10
β’
(LSubSpβπ) =
(LSubSpβπ) |
42 | 17, 41, 26 | lspsncl 20580 |
. . . . . . . . . . . 12
β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
43 | 3, 30, 42 | syl2anc 584 |
. . . . . . . . . . 11
β’ (π β (πβ{π}) β (LSubSpβπ)) |
44 | 43 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ (πβ{π}) = (πβ{π})) β (πβ{π}) β (LSubSpβπ)) |
45 | 17, 41, 26, 27, 44, 29 | lspsnel5 20598 |
. . . . . . . . 9
β’ ((π β§ (πβ{π}) = (πβ{π})) β (π β (πβ{π}) β (πβ{π}) β (πβ{π}))) |
46 | 40, 45 | mpbird 256 |
. . . . . . . 8
β’ ((π β§ (πβ{π}) = (πβ{π})) β π β (πβ{π})) |
47 | 4, 6, 17, 20, 26 | lspsnel 20606 |
. . . . . . . . 9
β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β βπ β πΎ π = (π Β· π))) |
48 | 27, 31, 47 | syl2anc 584 |
. . . . . . . 8
β’ ((π β§ (πβ{π}) = (πβ{π})) β (π β (πβ{π}) β βπ β πΎ π = (π Β· π))) |
49 | 46, 48 | mpbid 231 |
. . . . . . 7
β’ ((π β§ (πβ{π}) = (πβ{π})) β βπ β πΎ π = (π Β· π)) |
50 | 49 | adantr 481 |
. . . . . 6
β’ (((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β βπ β πΎ π = (π Β· π)) |
51 | | simprl 769 |
. . . . . . 7
β’ ((((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β§ (π β πΎ β§ π = (π Β· π))) β π β πΎ) |
52 | | simpr 485 |
. . . . . . . . . . 11
β’ ((π β πΎ β§ π = (π Β· π)) β π = (π Β· π)) |
53 | 52 | adantl 482 |
. . . . . . . . . 10
β’ ((((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β§ (π β πΎ β§ π = (π Β· π))) β π = (π Β· π)) |
54 | 33 | biimpd 228 |
. . . . . . . . . . . . 13
β’ ((π β§ (πβ{π}) = (πβ{π})) β (π = (0gβπ) β π = (0gβπ))) |
55 | 54 | necon3d 2961 |
. . . . . . . . . . . 12
β’ ((π β§ (πβ{π}) = (πβ{π})) β (π β (0gβπ) β π β (0gβπ))) |
56 | 55 | imp 407 |
. . . . . . . . . . 11
β’ (((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β π β (0gβπ)) |
57 | 56 | adantr 481 |
. . . . . . . . . 10
β’ ((((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β§ (π β πΎ β§ π = (π Β· π))) β π β (0gβπ)) |
58 | 53, 57 | eqnetrrd 3009 |
. . . . . . . . 9
β’ ((((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β§ (π β πΎ β§ π = (π Β· π))) β (π Β· π) β (0gβπ)) |
59 | 1 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ (πβ{π}) = (πβ{π})) β π β LVec) |
60 | 59 | ad2antrr 724 |
. . . . . . . . . 10
β’ ((((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β§ (π β πΎ β§ π = (π Β· π))) β π β LVec) |
61 | 31 | ad2antrr 724 |
. . . . . . . . . 10
β’ ((((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β§ (π β πΎ β§ π = (π Β· π))) β π β π) |
62 | 17, 20, 4, 6, 11, 18, 60, 51, 61 | lvecvsn0 20714 |
. . . . . . . . 9
β’ ((((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β§ (π β πΎ β§ π = (π Β· π))) β ((π Β· π) β (0gβπ) β (π β 0 β§ π β (0gβπ)))) |
63 | 58, 62 | mpbid 231 |
. . . . . . . 8
β’ ((((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β§ (π β πΎ β§ π = (π Β· π))) β (π β 0 β§ π β (0gβπ))) |
64 | 63 | simpld 495 |
. . . . . . 7
β’ ((((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β§ (π β πΎ β§ π = (π Β· π))) β π β 0 ) |
65 | | eldifsn 4789 |
. . . . . . 7
β’ (π β (πΎ β { 0 }) β (π β πΎ β§ π β 0 )) |
66 | 51, 64, 65 | sylanbrc 583 |
. . . . . 6
β’ ((((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β§ (π β πΎ β§ π = (π Β· π))) β π β (πΎ β { 0 })) |
67 | 50, 66, 53 | reximssdv 3172 |
. . . . 5
β’ (((π β§ (πβ{π}) = (πβ{π})) β§ π β (0gβπ)) β βπ β (πΎ β { 0 })π = (π Β· π)) |
68 | 38, 67 | pm2.61dane 3029 |
. . . 4
β’ ((π β§ (πβ{π}) = (πβ{π})) β βπ β (πΎ β { 0 })π = (π Β· π)) |
69 | 68 | ex 413 |
. . 3
β’ (π β ((πβ{π}) = (πβ{π}) β βπ β (πΎ β { 0 })π = (π Β· π))) |
70 | 1 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (πΎ β { 0 })) β π β LVec) |
71 | | eldifi 4125 |
. . . . . . . 8
β’ (π β (πΎ β { 0 }) β π β πΎ) |
72 | 71 | adantl 482 |
. . . . . . 7
β’ ((π β§ π β (πΎ β { 0 })) β π β πΎ) |
73 | | eldifsni 4792 |
. . . . . . . 8
β’ (π β (πΎ β { 0 }) β π β 0 ) |
74 | 73 | adantl 482 |
. . . . . . 7
β’ ((π β§ π β (πΎ β { 0 })) β π β 0 ) |
75 | 30 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (πΎ β { 0 })) β π β π) |
76 | 17, 4, 20, 6, 11, 26 | lspsnvs 20719 |
. . . . . . 7
β’ ((π β LVec β§ (π β πΎ β§ π β 0 ) β§ π β π) β (πβ{(π Β· π)}) = (πβ{π})) |
77 | 70, 72, 74, 75, 76 | syl121anc 1375 |
. . . . . 6
β’ ((π β§ π β (πΎ β { 0 })) β (πβ{(π Β· π)}) = (πβ{π})) |
78 | 77 | ex 413 |
. . . . 5
β’ (π β (π β (πΎ β { 0 }) β (πβ{(π Β· π)}) = (πβ{π}))) |
79 | | sneq 4637 |
. . . . . . 7
β’ (π = (π Β· π) β {π} = {(π Β· π)}) |
80 | 79 | fveqeq2d 6896 |
. . . . . 6
β’ (π = (π Β· π) β ((πβ{π}) = (πβ{π}) β (πβ{(π Β· π)}) = (πβ{π}))) |
81 | 80 | biimprcd 249 |
. . . . 5
β’ ((πβ{(π Β· π)}) = (πβ{π}) β (π = (π Β· π) β (πβ{π}) = (πβ{π}))) |
82 | 78, 81 | syl6 35 |
. . . 4
β’ (π β (π β (πΎ β { 0 }) β (π = (π Β· π) β (πβ{π}) = (πβ{π})))) |
83 | 82 | rexlimdv 3153 |
. . 3
β’ (π β (βπ β (πΎ β { 0 })π = (π Β· π) β (πβ{π}) = (πβ{π}))) |
84 | 69, 83 | impbid 211 |
. 2
β’ (π β ((πβ{π}) = (πβ{π}) β βπ β (πΎ β { 0 })π = (π Β· π))) |
85 | | oveq1 7412 |
. . . 4
β’ (π = π β (π Β· π) = (π Β· π)) |
86 | 85 | eqeq2d 2743 |
. . 3
β’ (π = π β (π = (π Β· π) β π = (π Β· π))) |
87 | 86 | cbvrexvw 3235 |
. 2
β’
(βπ β
(πΎ β { 0 })π = (π Β· π) β βπ β (πΎ β { 0 })π = (π Β· π)) |
88 | 84, 87 | bitrdi 286 |
1
β’ (π β ((πβ{π}) = (πβ{π}) β βπ β (πΎ β { 0 })π = (π Β· π))) |