MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneq Structured version   Visualization version   GIF version

Theorem lspsneq 20583
Description: Equal spans of singletons must have proportional vectors. See lspsnss2 20466 for comparable span version. TODO: can proof be shortened? (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
lspsneq.v 𝑉 = (Base‘𝑊)
lspsneq.s 𝑆 = (Scalar‘𝑊)
lspsneq.k 𝐾 = (Base‘𝑆)
lspsneq.o 0 = (0g𝑆)
lspsneq.t · = ( ·𝑠𝑊)
lspsneq.n 𝑁 = (LSpan‘𝑊)
lspsneq.w (𝜑𝑊 ∈ LVec)
lspsneq.x (𝜑𝑋𝑉)
lspsneq.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspsneq (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌)))
Distinct variable groups:   𝑘,𝐾   0 ,𝑘   · ,𝑘   𝑘,𝑋   𝑘,𝑌
Allowed substitution hints:   𝜑(𝑘)   𝑆(𝑘)   𝑁(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem lspsneq
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lspsneq.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
2 lveclmod 20567 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
4 lspsneq.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑊)
54lmodring 20330 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ∈ Ring)
6 lspsneq.k . . . . . . . . . 10 𝐾 = (Base‘𝑆)
7 eqid 2736 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
86, 7ringidcl 19989 . . . . . . . . 9 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝐾)
93, 5, 83syl 18 . . . . . . . 8 (𝜑 → (1r𝑆) ∈ 𝐾)
104lvecdrng 20566 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑆 ∈ DivRing)
11 lspsneq.o . . . . . . . . . 10 0 = (0g𝑆)
1211, 7drngunz 20203 . . . . . . . . 9 (𝑆 ∈ DivRing → (1r𝑆) ≠ 0 )
131, 10, 123syl 18 . . . . . . . 8 (𝜑 → (1r𝑆) ≠ 0 )
14 eldifsn 4747 . . . . . . . 8 ((1r𝑆) ∈ (𝐾 ∖ { 0 }) ↔ ((1r𝑆) ∈ 𝐾 ∧ (1r𝑆) ≠ 0 ))
159, 13, 14sylanbrc 583 . . . . . . 7 (𝜑 → (1r𝑆) ∈ (𝐾 ∖ { 0 }))
1615ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → (1r𝑆) ∈ (𝐾 ∖ { 0 }))
17 lspsneq.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
18 eqid 2736 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
1917, 18lmod0vcl 20351 . . . . . . . . 9 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
20 lspsneq.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
2117, 4, 20, 7lmodvs1 20350 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (0g𝑊) ∈ 𝑉) → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
223, 19, 21syl2anc2 585 . . . . . . . 8 (𝜑 → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
2322ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
24 oveq2 7365 . . . . . . . 8 (𝑌 = (0g𝑊) → ((1r𝑆) · 𝑌) = ((1r𝑆) · (0g𝑊)))
2524adantl 482 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ((1r𝑆) · 𝑌) = ((1r𝑆) · (0g𝑊)))
26 lspsneq.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
273adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LMod)
28 lspsneq.x . . . . . . . . . 10 (𝜑𝑋𝑉)
2928adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋𝑉)
30 lspsneq.y . . . . . . . . . 10 (𝜑𝑌𝑉)
3130adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑌𝑉)
32 simpr 485 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3317, 18, 26, 27, 29, 31, 32lspsneq0b 20474 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g𝑊) ↔ 𝑌 = (0g𝑊)))
3433biimpar 478 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → 𝑋 = (0g𝑊))
3523, 25, 343eqtr4rd 2787 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → 𝑋 = ((1r𝑆) · 𝑌))
36 oveq1 7364 . . . . . . 7 (𝑗 = (1r𝑆) → (𝑗 · 𝑌) = ((1r𝑆) · 𝑌))
3736rspceeqv 3595 . . . . . 6 (((1r𝑆) ∈ (𝐾 ∖ { 0 }) ∧ 𝑋 = ((1r𝑆) · 𝑌)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
3816, 35, 37syl2anc 584 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
39 eqimss 4000 . . . . . . . . . 10 ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))
4039adantl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))
41 eqid 2736 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4217, 41, 26lspsncl 20438 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
433, 30, 42syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
4443adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
4517, 41, 26, 27, 44, 29lspsnel5 20456 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})))
4640, 45mpbird 256 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌}))
474, 6, 17, 20, 26lspsnel 20464 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌)))
4827, 31, 47syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌)))
4946, 48mpbid 231 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌))
5049adantr 481 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌))
51 simprl 769 . . . . . . 7 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗𝐾)
52 simpr 485 . . . . . . . . . . 11 ((𝑗𝐾𝑋 = (𝑗 · 𝑌)) → 𝑋 = (𝑗 · 𝑌))
5352adantl 482 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑋 = (𝑗 · 𝑌))
5433biimpd 228 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g𝑊) → 𝑌 = (0g𝑊)))
5554necon3d 2964 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑌 ≠ (0g𝑊) → 𝑋 ≠ (0g𝑊)))
5655imp 407 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → 𝑋 ≠ (0g𝑊))
5756adantr 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑋 ≠ (0g𝑊))
5853, 57eqnetrrd 3012 . . . . . . . . 9 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → (𝑗 · 𝑌) ≠ (0g𝑊))
591adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LVec)
6059ad2antrr 724 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑊 ∈ LVec)
6131ad2antrr 724 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑌𝑉)
6217, 20, 4, 6, 11, 18, 60, 51, 61lvecvsn0 20570 . . . . . . . . 9 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → ((𝑗 · 𝑌) ≠ (0g𝑊) ↔ (𝑗0𝑌 ≠ (0g𝑊))))
6358, 62mpbid 231 . . . . . . . 8 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → (𝑗0𝑌 ≠ (0g𝑊)))
6463simpld 495 . . . . . . 7 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗0 )
65 eldifsn 4747 . . . . . . 7 (𝑗 ∈ (𝐾 ∖ { 0 }) ↔ (𝑗𝐾𝑗0 ))
6651, 64, 65sylanbrc 583 . . . . . 6 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗 ∈ (𝐾 ∖ { 0 }))
6750, 66, 53reximssdv 3169 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
6838, 67pm2.61dane 3032 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
6968ex 413 . . 3 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)))
701adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑊 ∈ LVec)
71 eldifi 4086 . . . . . . . 8 (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗𝐾)
7271adantl 482 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗𝐾)
73 eldifsni 4750 . . . . . . . 8 (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗0 )
7473adantl 482 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗0 )
7530adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑌𝑉)
7617, 4, 20, 6, 11, 26lspsnvs 20575 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑗𝐾𝑗0 ) ∧ 𝑌𝑉) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))
7770, 72, 74, 75, 76syl121anc 1375 . . . . . 6 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))
7877ex 413 . . . . 5 (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})))
79 sneq 4596 . . . . . . 7 (𝑋 = (𝑗 · 𝑌) → {𝑋} = {(𝑗 · 𝑌)})
8079fveqeq2d 6850 . . . . . 6 (𝑋 = (𝑗 · 𝑌) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})))
8180biimprcd 249 . . . . 5 ((𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
8278, 81syl6 35 . . . 4 (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))))
8382rexlimdv 3150 . . 3 (𝜑 → (∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
8469, 83impbid 211 . 2 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)))
85 oveq1 7364 . . . 4 (𝑗 = 𝑘 → (𝑗 · 𝑌) = (𝑘 · 𝑌))
8685eqeq2d 2747 . . 3 (𝑗 = 𝑘 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑘 · 𝑌)))
8786cbvrexvw 3226 . 2 (∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌))
8884, 87bitrdi 286 1 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cdif 3907  wss 3910  {csn 4586  cfv 6496  (class class class)co 7357  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  1rcur 19913  Ringcrg 19964  DivRingcdr 20185  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432  LVecclvec 20563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564
This theorem is referenced by:  lspsneu  20584  mapdpglem26  40161  mapdpglem27  40162  hdmap14lem2a  40330  hdmap14lem2N  40332  prjsprellsp  40935
  Copyright terms: Public domain W3C validator