MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneq Structured version   Visualization version   GIF version

Theorem lspsneq 21032
Description: Equal spans of singletons must have proportional vectors. See lspsnss2 20911 for comparable span version. TODO: can proof be shortened? (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
lspsneq.v 𝑉 = (Base‘𝑊)
lspsneq.s 𝑆 = (Scalar‘𝑊)
lspsneq.k 𝐾 = (Base‘𝑆)
lspsneq.o 0 = (0g𝑆)
lspsneq.t · = ( ·𝑠𝑊)
lspsneq.n 𝑁 = (LSpan‘𝑊)
lspsneq.w (𝜑𝑊 ∈ LVec)
lspsneq.x (𝜑𝑋𝑉)
lspsneq.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspsneq (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌)))
Distinct variable groups:   𝑘,𝐾   0 ,𝑘   · ,𝑘   𝑘,𝑋   𝑘,𝑌
Allowed substitution hints:   𝜑(𝑘)   𝑆(𝑘)   𝑁(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem lspsneq
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lspsneq.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
2 lveclmod 21013 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
4 lspsneq.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑊)
54lmodring 20774 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ∈ Ring)
6 lspsneq.k . . . . . . . . . 10 𝐾 = (Base‘𝑆)
7 eqid 2729 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
86, 7ringidcl 20174 . . . . . . . . 9 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝐾)
93, 5, 83syl 18 . . . . . . . 8 (𝜑 → (1r𝑆) ∈ 𝐾)
104lvecdrng 21012 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑆 ∈ DivRing)
11 lspsneq.o . . . . . . . . . 10 0 = (0g𝑆)
1211, 7drngunz 20656 . . . . . . . . 9 (𝑆 ∈ DivRing → (1r𝑆) ≠ 0 )
131, 10, 123syl 18 . . . . . . . 8 (𝜑 → (1r𝑆) ≠ 0 )
14 eldifsn 4750 . . . . . . . 8 ((1r𝑆) ∈ (𝐾 ∖ { 0 }) ↔ ((1r𝑆) ∈ 𝐾 ∧ (1r𝑆) ≠ 0 ))
159, 13, 14sylanbrc 583 . . . . . . 7 (𝜑 → (1r𝑆) ∈ (𝐾 ∖ { 0 }))
1615ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → (1r𝑆) ∈ (𝐾 ∖ { 0 }))
17 lspsneq.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
18 eqid 2729 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
1917, 18lmod0vcl 20797 . . . . . . . . 9 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
20 lspsneq.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
2117, 4, 20, 7lmodvs1 20796 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (0g𝑊) ∈ 𝑉) → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
223, 19, 21syl2anc2 585 . . . . . . . 8 (𝜑 → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
2322ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
24 oveq2 7395 . . . . . . . 8 (𝑌 = (0g𝑊) → ((1r𝑆) · 𝑌) = ((1r𝑆) · (0g𝑊)))
2524adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ((1r𝑆) · 𝑌) = ((1r𝑆) · (0g𝑊)))
26 lspsneq.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
273adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LMod)
28 lspsneq.x . . . . . . . . . 10 (𝜑𝑋𝑉)
2928adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋𝑉)
30 lspsneq.y . . . . . . . . . 10 (𝜑𝑌𝑉)
3130adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑌𝑉)
32 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3317, 18, 26, 27, 29, 31, 32lspsneq0b 20919 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g𝑊) ↔ 𝑌 = (0g𝑊)))
3433biimpar 477 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → 𝑋 = (0g𝑊))
3523, 25, 343eqtr4rd 2775 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → 𝑋 = ((1r𝑆) · 𝑌))
36 oveq1 7394 . . . . . . 7 (𝑗 = (1r𝑆) → (𝑗 · 𝑌) = ((1r𝑆) · 𝑌))
3736rspceeqv 3611 . . . . . 6 (((1r𝑆) ∈ (𝐾 ∖ { 0 }) ∧ 𝑋 = ((1r𝑆) · 𝑌)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
3816, 35, 37syl2anc 584 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
39 eqimss 4005 . . . . . . . . . 10 ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))
4039adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))
41 eqid 2729 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4217, 41, 26lspsncl 20883 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
433, 30, 42syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
4443adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
4517, 41, 26, 27, 44, 29ellspsn5b 20901 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})))
4640, 45mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌}))
474, 6, 17, 20, 26ellspsn 20909 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌)))
4827, 31, 47syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌)))
4946, 48mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌))
5049adantr 480 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌))
51 simprl 770 . . . . . . 7 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗𝐾)
52 simpr 484 . . . . . . . . . . 11 ((𝑗𝐾𝑋 = (𝑗 · 𝑌)) → 𝑋 = (𝑗 · 𝑌))
5352adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑋 = (𝑗 · 𝑌))
5433biimpd 229 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g𝑊) → 𝑌 = (0g𝑊)))
5554necon3d 2946 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑌 ≠ (0g𝑊) → 𝑋 ≠ (0g𝑊)))
5655imp 406 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → 𝑋 ≠ (0g𝑊))
5756adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑋 ≠ (0g𝑊))
5853, 57eqnetrrd 2993 . . . . . . . . 9 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → (𝑗 · 𝑌) ≠ (0g𝑊))
591adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LVec)
6059ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑊 ∈ LVec)
6131ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑌𝑉)
6217, 20, 4, 6, 11, 18, 60, 51, 61lvecvsn0 21019 . . . . . . . . 9 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → ((𝑗 · 𝑌) ≠ (0g𝑊) ↔ (𝑗0𝑌 ≠ (0g𝑊))))
6358, 62mpbid 232 . . . . . . . 8 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → (𝑗0𝑌 ≠ (0g𝑊)))
6463simpld 494 . . . . . . 7 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗0 )
65 eldifsn 4750 . . . . . . 7 (𝑗 ∈ (𝐾 ∖ { 0 }) ↔ (𝑗𝐾𝑗0 ))
6651, 64, 65sylanbrc 583 . . . . . 6 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗 ∈ (𝐾 ∖ { 0 }))
6750, 66, 53reximssdv 3151 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
6838, 67pm2.61dane 3012 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
6968ex 412 . . 3 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)))
701adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑊 ∈ LVec)
71 eldifi 4094 . . . . . . . 8 (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗𝐾)
7271adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗𝐾)
73 eldifsni 4754 . . . . . . . 8 (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗0 )
7473adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗0 )
7530adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑌𝑉)
7617, 4, 20, 6, 11, 26lspsnvs 21024 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑗𝐾𝑗0 ) ∧ 𝑌𝑉) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))
7770, 72, 74, 75, 76syl121anc 1377 . . . . . 6 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))
7877ex 412 . . . . 5 (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})))
79 sneq 4599 . . . . . . 7 (𝑋 = (𝑗 · 𝑌) → {𝑋} = {(𝑗 · 𝑌)})
8079fveqeq2d 6866 . . . . . 6 (𝑋 = (𝑗 · 𝑌) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})))
8180biimprcd 250 . . . . 5 ((𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
8278, 81syl6 35 . . . 4 (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))))
8382rexlimdv 3132 . . 3 (𝜑 → (∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
8469, 83impbid 212 . 2 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)))
85 oveq1 7394 . . . 4 (𝑗 = 𝑘 → (𝑗 · 𝑌) = (𝑘 · 𝑌))
8685eqeq2d 2740 . . 3 (𝑗 = 𝑘 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑘 · 𝑌)))
8786cbvrexvw 3216 . 2 (∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌))
8884, 87bitrdi 287 1 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3911  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  1rcur 20090  Ringcrg 20142  DivRingcdr 20638  LModclmod 20766  LSubSpclss 20837  LSpanclspn 20877  LVecclvec 21009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010
This theorem is referenced by:  lspsneu  21033  mapdpglem26  41692  mapdpglem27  41693  hdmap14lem2a  41861  hdmap14lem2N  41863  prjsprellsp  42599
  Copyright terms: Public domain W3C validator