| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oawordex2 | Structured version Visualization version GIF version | ||
| Description: If 𝐶 is between 𝐴 (inclusive) and (𝐴 +o 𝐵) (exclusive), there is an ordinal which equals 𝐶 when summed to 𝐴. This is a slightly different statement than oawordex 8595 or oawordeu 8593. (Contributed by RP, 7-Jan-2025.) |
| Ref | Expression |
|---|---|
| oawordex2 | ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 771 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → 𝐴 ⊆ 𝐶) | |
| 2 | simpll 767 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → 𝐴 ∈ On) | |
| 3 | oacl 8573 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) | |
| 4 | simpr 484 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵)) → 𝐶 ∈ (𝐴 +o 𝐵)) | |
| 5 | onelon 6409 | . . . . 5 ⊢ (((𝐴 +o 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴 +o 𝐵)) → 𝐶 ∈ On) | |
| 6 | 3, 4, 5 | syl2an 596 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → 𝐶 ∈ On) |
| 7 | oawordex 8595 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐶 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐶)) | |
| 8 | 2, 6, 7 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → (𝐴 ⊆ 𝐶 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐶)) |
| 9 | 1, 8 | mpbid 232 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐶) |
| 10 | simprr 773 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → (𝐴 +o 𝑥) = 𝐶) | |
| 11 | simprr 773 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → 𝐶 ∈ (𝐴 +o 𝐵)) | |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝐶 ∈ (𝐴 +o 𝐵)) |
| 13 | 10, 12 | eqeltrd 2841 | . . 3 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)) |
| 14 | simprl 771 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝑥 ∈ On) | |
| 15 | simpllr 776 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝐵 ∈ On) | |
| 16 | 2 | adantr 480 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝐴 ∈ On) |
| 17 | oaord 8585 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑥 ∈ 𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵))) | |
| 18 | 14, 15, 16, 17 | syl3anc 1373 | . . 3 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → (𝑥 ∈ 𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵))) |
| 19 | 13, 18 | mpbird 257 | . 2 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝑥 ∈ 𝐵) |
| 20 | 9, 19, 10 | reximssdv 3173 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3951 Oncon0 6384 (class class class)co 7431 +o coa 8503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-oadd 8510 |
| This theorem is referenced by: nnawordexg 43340 tfsconcatlem 43349 tfsconcatfv 43354 tfsconcatrn 43355 tfsconcatrev 43361 oaun3lem1 43387 oadif1 43393 |
| Copyright terms: Public domain | W3C validator |