![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oawordex2 | Structured version Visualization version GIF version |
Description: If 𝐶 is between 𝐴 (inclusive) and (𝐴 +o 𝐵) (exclusive), there is an ordinal which equals 𝐶 when summed to 𝐴. This is a slightly different statement than oawordex 8576 or oawordeu 8574. (Contributed by RP, 7-Jan-2025.) |
Ref | Expression |
---|---|
oawordex2 | ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 769 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → 𝐴 ⊆ 𝐶) | |
2 | simpll 765 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → 𝐴 ∈ On) | |
3 | oacl 8554 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) | |
4 | simpr 483 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵)) → 𝐶 ∈ (𝐴 +o 𝐵)) | |
5 | onelon 6389 | . . . . 5 ⊢ (((𝐴 +o 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴 +o 𝐵)) → 𝐶 ∈ On) | |
6 | 3, 4, 5 | syl2an 594 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → 𝐶 ∈ On) |
7 | oawordex 8576 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐶 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐶)) | |
8 | 2, 6, 7 | syl2anc 582 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → (𝐴 ⊆ 𝐶 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐶)) |
9 | 1, 8 | mpbid 231 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐶) |
10 | simprr 771 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → (𝐴 +o 𝑥) = 𝐶) | |
11 | simprr 771 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → 𝐶 ∈ (𝐴 +o 𝐵)) | |
12 | 11 | adantr 479 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝐶 ∈ (𝐴 +o 𝐵)) |
13 | 10, 12 | eqeltrd 2825 | . . 3 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)) |
14 | simprl 769 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝑥 ∈ On) | |
15 | simpllr 774 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝐵 ∈ On) | |
16 | 2 | adantr 479 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝐴 ∈ On) |
17 | oaord 8566 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑥 ∈ 𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵))) | |
18 | 14, 15, 16, 17 | syl3anc 1368 | . . 3 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → (𝑥 ∈ 𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵))) |
19 | 13, 18 | mpbird 256 | . 2 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝑥 ∈ 𝐵) |
20 | 9, 19, 10 | reximssdv 3163 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 ⊆ wss 3939 Oncon0 6364 (class class class)co 7416 +o coa 8482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-oadd 8489 |
This theorem is referenced by: nnawordexg 42821 tfsconcatlem 42830 tfsconcatfv 42835 tfsconcatrn 42836 tfsconcatrev 42842 oaun3lem1 42868 oadif1 42874 |
Copyright terms: Public domain | W3C validator |