![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oawordex2 | Structured version Visualization version GIF version |
Description: If 𝐶 is between 𝐴 (inclusive) and (𝐴 +o 𝐵) (exclusive), there is an ordinal which equals 𝐶 when summed to 𝐴. This is a slightly different statement than oawordex 8505 or oawordeu 8503. (Contributed by RP, 7-Jan-2025.) |
Ref | Expression |
---|---|
oawordex2 | ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 770 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → 𝐴 ⊆ 𝐶) | |
2 | simpll 766 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → 𝐴 ∈ On) | |
3 | oacl 8482 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) | |
4 | simpr 486 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵)) → 𝐶 ∈ (𝐴 +o 𝐵)) | |
5 | onelon 6343 | . . . . 5 ⊢ (((𝐴 +o 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴 +o 𝐵)) → 𝐶 ∈ On) | |
6 | 3, 4, 5 | syl2an 597 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → 𝐶 ∈ On) |
7 | oawordex 8505 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐶 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐶)) | |
8 | 2, 6, 7 | syl2anc 585 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → (𝐴 ⊆ 𝐶 ↔ ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐶)) |
9 | 1, 8 | mpbid 231 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐶) |
10 | simprr 772 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → (𝐴 +o 𝑥) = 𝐶) | |
11 | simprr 772 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → 𝐶 ∈ (𝐴 +o 𝐵)) | |
12 | 11 | adantr 482 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝐶 ∈ (𝐴 +o 𝐵)) |
13 | 10, 12 | eqeltrd 2834 | . . 3 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵)) |
14 | simprl 770 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝑥 ∈ On) | |
15 | simpllr 775 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝐵 ∈ On) | |
16 | 2 | adantr 482 | . . . 4 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝐴 ∈ On) |
17 | oaord 8495 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑥 ∈ 𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵))) | |
18 | 14, 15, 16, 17 | syl3anc 1372 | . . 3 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → (𝑥 ∈ 𝐵 ↔ (𝐴 +o 𝑥) ∈ (𝐴 +o 𝐵))) |
19 | 13, 18 | mpbird 257 | . 2 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) ∧ (𝑥 ∈ On ∧ (𝐴 +o 𝑥) = 𝐶)) → 𝑥 ∈ 𝐵) |
20 | 9, 19, 10 | reximssdv 3166 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3070 ⊆ wss 3911 Oncon0 6318 (class class class)co 7358 +o coa 8410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-oadd 8417 |
This theorem is referenced by: nnawordexg 41705 oaun3lem1 41733 oadif1 41739 |
Copyright terms: Public domain | W3C validator |