MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp4 Structured version   Visualization version   GIF version

Theorem iscnp4 21277
Description: The predicate "𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃." in terms of neighborhoods. (Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
iscnp4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑃,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem iscnp4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cnpf2 21264 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
213expa 1140 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
323adantl3 1202 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
4 simplr 776 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
5 simpll2 1264 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝐾 ∈ (TopOn‘𝑌))
6 topontop 20927 . . . . . . . . 9 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
75, 6syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝐾 ∈ Top)
8 eqid 2805 . . . . . . . . . 10 𝐾 = 𝐾
98neii1 21120 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑦 𝐾)
107, 9sylancom 578 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑦 𝐾)
118ntropn 21063 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑦 𝐾) → ((int‘𝐾)‘𝑦) ∈ 𝐾)
127, 10, 11syl2anc 575 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → ((int‘𝐾)‘𝑦) ∈ 𝐾)
13 simpr 473 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}))
143adantr 468 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝐹:𝑋𝑌)
15 simpll3 1266 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑃𝑋)
1614, 15ffvelrnd 6579 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → (𝐹𝑃) ∈ 𝑌)
17 toponuni 20928 . . . . . . . . . . . . 13 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
185, 17syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑌 = 𝐾)
1916, 18eleqtrd 2886 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → (𝐹𝑃) ∈ 𝐾)
2019snssd 4527 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → {(𝐹𝑃)} ⊆ 𝐾)
218neiint 21118 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ {(𝐹𝑃)} ⊆ 𝐾𝑦 𝐾) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) ↔ {(𝐹𝑃)} ⊆ ((int‘𝐾)‘𝑦)))
227, 20, 10, 21syl3anc 1483 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) ↔ {(𝐹𝑃)} ⊆ ((int‘𝐾)‘𝑦)))
2313, 22mpbid 223 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → {(𝐹𝑃)} ⊆ ((int‘𝐾)‘𝑦))
24 fvex 6418 . . . . . . . . 9 (𝐹𝑃) ∈ V
2524snss 4503 . . . . . . . 8 ((𝐹𝑃) ∈ ((int‘𝐾)‘𝑦) ↔ {(𝐹𝑃)} ⊆ ((int‘𝐾)‘𝑦))
2623, 25sylibr 225 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → (𝐹𝑃) ∈ ((int‘𝐾)‘𝑦))
27 cnpimaex 21270 . . . . . . 7 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ ((int‘𝐾)‘𝑦) ∈ 𝐾 ∧ (𝐹𝑃) ∈ ((int‘𝐾)‘𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))
284, 12, 26, 27syl3anc 1483 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))
29 simpl1 1235 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘𝑋))
3029ad2antrr 708 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝐽 ∈ (TopOn‘𝑋))
31 topontop 20927 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3230, 31syl 17 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝐽 ∈ Top)
33 simprl 778 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑥𝐽)
34 simprrl 790 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑃𝑥)
35 opnneip 21133 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
3632, 33, 34, 35syl3anc 1483 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
37 simprrr 791 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦))
388ntrss2 21071 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑦 𝐾) → ((int‘𝐾)‘𝑦) ⊆ 𝑦)
397, 10, 38syl2anc 575 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → ((int‘𝐾)‘𝑦) ⊆ 𝑦)
4039adantr 468 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → ((int‘𝐾)‘𝑦) ⊆ 𝑦)
4137, 40sstrd 3805 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → (𝐹𝑥) ⊆ 𝑦)
4228, 36, 41reximssdv 3205 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)
4342ralrimiva 3153 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)
443, 43jca 503 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦))
4544ex 399 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)))
46 simpll2 1264 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝐾 ∈ (TopOn‘𝑌))
4746, 6syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝐾 ∈ Top)
48 simprl 778 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝑦𝐾)
49 simprr 780 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → (𝐹𝑃) ∈ 𝑦)
50 opnneip 21133 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ 𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}))
5147, 48, 49, 50syl3anc 1483 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}))
52 simpl1 1235 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
5352ad2antrr 708 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝐽 ∈ (TopOn‘𝑋))
5453, 31syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝐽 ∈ Top)
55 simprl 778 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
56 eqid 2805 . . . . . . . . . . . . . 14 𝐽 = 𝐽
5756neii1 21120 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑥 𝐽)
5854, 55, 57syl2anc 575 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑥 𝐽)
5956ntropn 21063 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
6054, 58, 59syl2anc 575 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
61 simpll3 1266 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝑃𝑋)
6261adantr 468 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑃𝑋)
63 toponuni 20928 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
6453, 63syl 17 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑋 = 𝐽)
6562, 64eleqtrd 2886 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑃 𝐽)
6665snssd 4527 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → {𝑃} ⊆ 𝐽)
6756neiint 21118 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝐽𝑥 𝐽) → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥)))
6854, 66, 58, 67syl3anc 1483 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥)))
6955, 68mpbid 223 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → {𝑃} ⊆ ((int‘𝐽)‘𝑥))
70 snssg 4502 . . . . . . . . . . . . 13 (𝑃𝑋 → (𝑃 ∈ ((int‘𝐽)‘𝑥) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥)))
7162, 70syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝑃 ∈ ((int‘𝐽)‘𝑥) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥)))
7269, 71mpbird 248 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑃 ∈ ((int‘𝐽)‘𝑥))
7356ntrss2 21071 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
7454, 58, 73syl2anc 575 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
75 imass2 5708 . . . . . . . . . . . . 13 (((int‘𝐽)‘𝑥) ⊆ 𝑥 → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ (𝐹𝑥))
7674, 75syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ (𝐹𝑥))
77 simprr 780 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝐹𝑥) ⊆ 𝑦)
7876, 77sstrd 3805 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)
79 eleq2 2873 . . . . . . . . . . . . 13 (𝑧 = ((int‘𝐽)‘𝑥) → (𝑃𝑧𝑃 ∈ ((int‘𝐽)‘𝑥)))
80 imaeq2 5669 . . . . . . . . . . . . . 14 (𝑧 = ((int‘𝐽)‘𝑥) → (𝐹𝑧) = (𝐹 “ ((int‘𝐽)‘𝑥)))
8180sseq1d 3826 . . . . . . . . . . . . 13 (𝑧 = ((int‘𝐽)‘𝑥) → ((𝐹𝑧) ⊆ 𝑦 ↔ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦))
8279, 81anbi12d 618 . . . . . . . . . . . 12 (𝑧 = ((int‘𝐽)‘𝑥) → ((𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ ((int‘𝐽)‘𝑥) ∧ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)))
8382rspcev 3501 . . . . . . . . . . 11 ((((int‘𝐽)‘𝑥) ∈ 𝐽 ∧ (𝑃 ∈ ((int‘𝐽)‘𝑥) ∧ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))
8460, 72, 78, 83syl12anc 856 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))
8584rexlimdvaa 3219 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → (∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
8651, 85embantd 59 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
8786ex 399 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))))
8887com23 86 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → ((𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))))
8988exp4a 420 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → (𝑦𝐾 → ((𝐹𝑃) ∈ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))))
9089ralimdv2 3148 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦 → ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))))
9190imdistanda 563 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))))
92 iscnp 21251 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))))
9391, 92sylibrd 250 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)))
9445, 93impbid 203 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2158  wral 3095  wrex 3096  wss 3766  {csn 4367   cuni 4626  cima 5311  wf 6094  cfv 6098  (class class class)co 6871  Topctop 20907  TopOnctopon 20924  intcnt 21031  neicnei 21111   CnP ccnp 21239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-ral 3100  df-rex 3101  df-reu 3102  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4627  df-iun 4710  df-br 4841  df-opab 4903  df-mpt 4920  df-id 5216  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-1st 7395  df-2nd 7396  df-map 8091  df-top 20908  df-topon 20925  df-ntr 21034  df-nei 21112  df-cnp 21242
This theorem is referenced by:  cnnei  21296
  Copyright terms: Public domain W3C validator