MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp4 Structured version   Visualization version   GIF version

Theorem iscnp4 23150
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃 " in terms of neighborhoods. (Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
iscnp4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑃,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem iscnp4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cnpf2 23137 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
213expa 1118 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
323adantl3 1169 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
4 simplr 768 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
5 simpll2 1214 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝐾 ∈ (TopOn‘𝑌))
6 topontop 22800 . . . . . . . . 9 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
75, 6syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝐾 ∈ Top)
8 eqid 2729 . . . . . . . . . 10 𝐾 = 𝐾
98neii1 22993 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑦 𝐾)
107, 9sylancom 588 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑦 𝐾)
118ntropn 22936 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑦 𝐾) → ((int‘𝐾)‘𝑦) ∈ 𝐾)
127, 10, 11syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → ((int‘𝐾)‘𝑦) ∈ 𝐾)
13 simpr 484 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}))
143adantr 480 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝐹:𝑋𝑌)
15 simpll3 1215 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑃𝑋)
1614, 15ffvelcdmd 7057 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → (𝐹𝑃) ∈ 𝑌)
17 toponuni 22801 . . . . . . . . . . . . 13 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
185, 17syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑌 = 𝐾)
1916, 18eleqtrd 2830 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → (𝐹𝑃) ∈ 𝐾)
2019snssd 4773 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → {(𝐹𝑃)} ⊆ 𝐾)
218neiint 22991 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ {(𝐹𝑃)} ⊆ 𝐾𝑦 𝐾) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) ↔ {(𝐹𝑃)} ⊆ ((int‘𝐾)‘𝑦)))
227, 20, 10, 21syl3anc 1373 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) ↔ {(𝐹𝑃)} ⊆ ((int‘𝐾)‘𝑦)))
2313, 22mpbid 232 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → {(𝐹𝑃)} ⊆ ((int‘𝐾)‘𝑦))
24 fvex 6871 . . . . . . . . 9 (𝐹𝑃) ∈ V
2524snss 4749 . . . . . . . 8 ((𝐹𝑃) ∈ ((int‘𝐾)‘𝑦) ↔ {(𝐹𝑃)} ⊆ ((int‘𝐾)‘𝑦))
2623, 25sylibr 234 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → (𝐹𝑃) ∈ ((int‘𝐾)‘𝑦))
27 cnpimaex 23143 . . . . . . 7 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ ((int‘𝐾)‘𝑦) ∈ 𝐾 ∧ (𝐹𝑃) ∈ ((int‘𝐾)‘𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))
284, 12, 26, 27syl3anc 1373 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))
29 simpl1 1192 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘𝑋))
3029ad2antrr 726 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝐽 ∈ (TopOn‘𝑋))
31 topontop 22800 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3230, 31syl 17 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝐽 ∈ Top)
33 simprl 770 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑥𝐽)
34 simprrl 780 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑃𝑥)
35 opnneip 23006 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
3632, 33, 34, 35syl3anc 1373 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
37 simprrr 781 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦))
388ntrss2 22944 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑦 𝐾) → ((int‘𝐾)‘𝑦) ⊆ 𝑦)
397, 10, 38syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → ((int‘𝐾)‘𝑦) ⊆ 𝑦)
4039adantr 480 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → ((int‘𝐾)‘𝑦) ⊆ 𝑦)
4137, 40sstrd 3957 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → (𝐹𝑥) ⊆ 𝑦)
4228, 36, 41reximssdv 3151 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)
4342ralrimiva 3125 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)
443, 43jca 511 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦))
4544ex 412 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)))
46 simpll2 1214 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝐾 ∈ (TopOn‘𝑌))
4746, 6syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝐾 ∈ Top)
48 simprl 770 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝑦𝐾)
49 simprr 772 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → (𝐹𝑃) ∈ 𝑦)
50 opnneip 23006 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ 𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}))
5147, 48, 49, 50syl3anc 1373 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}))
52 simpl1 1192 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
5352ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝐽 ∈ (TopOn‘𝑋))
5453, 31syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝐽 ∈ Top)
55 simprl 770 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
56 eqid 2729 . . . . . . . . . . . . . 14 𝐽 = 𝐽
5756neii1 22993 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑥 𝐽)
5854, 55, 57syl2anc 584 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑥 𝐽)
5956ntropn 22936 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
6054, 58, 59syl2anc 584 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
61 simpll3 1215 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝑃𝑋)
6261adantr 480 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑃𝑋)
63 toponuni 22801 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
6453, 63syl 17 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑋 = 𝐽)
6562, 64eleqtrd 2830 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑃 𝐽)
6665snssd 4773 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → {𝑃} ⊆ 𝐽)
6756neiint 22991 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝐽𝑥 𝐽) → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥)))
6854, 66, 58, 67syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥)))
6955, 68mpbid 232 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → {𝑃} ⊆ ((int‘𝐽)‘𝑥))
70 snssg 4747 . . . . . . . . . . . . 13 (𝑃𝑋 → (𝑃 ∈ ((int‘𝐽)‘𝑥) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥)))
7162, 70syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝑃 ∈ ((int‘𝐽)‘𝑥) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥)))
7269, 71mpbird 257 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑃 ∈ ((int‘𝐽)‘𝑥))
7356ntrss2 22944 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
7454, 58, 73syl2anc 584 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
75 imass2 6073 . . . . . . . . . . . . 13 (((int‘𝐽)‘𝑥) ⊆ 𝑥 → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ (𝐹𝑥))
7674, 75syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ (𝐹𝑥))
77 simprr 772 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝐹𝑥) ⊆ 𝑦)
7876, 77sstrd 3957 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)
79 eleq2 2817 . . . . . . . . . . . . 13 (𝑧 = ((int‘𝐽)‘𝑥) → (𝑃𝑧𝑃 ∈ ((int‘𝐽)‘𝑥)))
80 imaeq2 6027 . . . . . . . . . . . . . 14 (𝑧 = ((int‘𝐽)‘𝑥) → (𝐹𝑧) = (𝐹 “ ((int‘𝐽)‘𝑥)))
8180sseq1d 3978 . . . . . . . . . . . . 13 (𝑧 = ((int‘𝐽)‘𝑥) → ((𝐹𝑧) ⊆ 𝑦 ↔ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦))
8279, 81anbi12d 632 . . . . . . . . . . . 12 (𝑧 = ((int‘𝐽)‘𝑥) → ((𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ ((int‘𝐽)‘𝑥) ∧ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)))
8382rspcev 3588 . . . . . . . . . . 11 ((((int‘𝐽)‘𝑥) ∈ 𝐽 ∧ (𝑃 ∈ ((int‘𝐽)‘𝑥) ∧ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))
8460, 72, 78, 83syl12anc 836 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))
8584rexlimdvaa 3135 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → (∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
8651, 85embantd 59 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
8786ex 412 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))))
8887com23 86 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → ((𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))))
8988exp4a 431 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → (𝑦𝐾 → ((𝐹𝑃) ∈ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))))
9089ralimdv2 3142 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦 → ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))))
9190imdistanda 571 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))))
92 iscnp 23124 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))))
9391, 92sylibrd 259 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)))
9445, 93impbid 212 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914  {csn 4589   cuni 4871  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  Topctop 22780  TopOnctopon 22797  intcnt 22904  neicnei 22984   CnP ccnp 23112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-top 22781  df-topon 22798  df-ntr 22907  df-nei 22985  df-cnp 23115
This theorem is referenced by:  cnnei  23169
  Copyright terms: Public domain W3C validator