MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp4 Structured version   Visualization version   GIF version

Theorem iscnp4 22412
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃 " in terms of neighborhoods. (Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
iscnp4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑃,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem iscnp4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cnpf2 22399 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
213expa 1117 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
323adantl3 1167 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
4 simplr 766 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
5 simpll2 1212 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝐾 ∈ (TopOn‘𝑌))
6 topontop 22060 . . . . . . . . 9 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
75, 6syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝐾 ∈ Top)
8 eqid 2738 . . . . . . . . . 10 𝐾 = 𝐾
98neii1 22255 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑦 𝐾)
107, 9sylancom 588 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑦 𝐾)
118ntropn 22198 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑦 𝐾) → ((int‘𝐾)‘𝑦) ∈ 𝐾)
127, 10, 11syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → ((int‘𝐾)‘𝑦) ∈ 𝐾)
13 simpr 485 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}))
143adantr 481 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝐹:𝑋𝑌)
15 simpll3 1213 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑃𝑋)
1614, 15ffvelrnd 6964 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → (𝐹𝑃) ∈ 𝑌)
17 toponuni 22061 . . . . . . . . . . . . 13 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
185, 17syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → 𝑌 = 𝐾)
1916, 18eleqtrd 2841 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → (𝐹𝑃) ∈ 𝐾)
2019snssd 4744 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → {(𝐹𝑃)} ⊆ 𝐾)
218neiint 22253 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ {(𝐹𝑃)} ⊆ 𝐾𝑦 𝐾) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) ↔ {(𝐹𝑃)} ⊆ ((int‘𝐾)‘𝑦)))
227, 20, 10, 21syl3anc 1370 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) ↔ {(𝐹𝑃)} ⊆ ((int‘𝐾)‘𝑦)))
2313, 22mpbid 231 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → {(𝐹𝑃)} ⊆ ((int‘𝐾)‘𝑦))
24 fvex 6789 . . . . . . . . 9 (𝐹𝑃) ∈ V
2524snss 4721 . . . . . . . 8 ((𝐹𝑃) ∈ ((int‘𝐾)‘𝑦) ↔ {(𝐹𝑃)} ⊆ ((int‘𝐾)‘𝑦))
2623, 25sylibr 233 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → (𝐹𝑃) ∈ ((int‘𝐾)‘𝑦))
27 cnpimaex 22405 . . . . . . 7 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ ((int‘𝐾)‘𝑦) ∈ 𝐾 ∧ (𝐹𝑃) ∈ ((int‘𝐾)‘𝑦)) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))
284, 12, 26, 27syl3anc 1370 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))
29 simpl1 1190 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘𝑋))
3029ad2antrr 723 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝐽 ∈ (TopOn‘𝑋))
31 topontop 22060 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3230, 31syl 17 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝐽 ∈ Top)
33 simprl 768 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑥𝐽)
34 simprrl 778 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑃𝑥)
35 opnneip 22268 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
3632, 33, 34, 35syl3anc 1370 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
37 simprrr 779 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦))
388ntrss2 22206 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑦 𝐾) → ((int‘𝐾)‘𝑦) ⊆ 𝑦)
397, 10, 38syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → ((int‘𝐾)‘𝑦) ⊆ 𝑦)
4039adantr 481 . . . . . . 7 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → ((int‘𝐾)‘𝑦) ⊆ 𝑦)
4137, 40sstrd 3932 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) ∧ (𝑥𝐽 ∧ (𝑃𝑥 ∧ (𝐹𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → (𝐹𝑥) ⊆ 𝑦)
4228, 36, 41reximssdv 3204 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)
4342ralrimiva 3103 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)
443, 43jca 512 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦))
4544ex 413 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)))
46 simpll2 1212 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝐾 ∈ (TopOn‘𝑌))
4746, 6syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝐾 ∈ Top)
48 simprl 768 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝑦𝐾)
49 simprr 770 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → (𝐹𝑃) ∈ 𝑦)
50 opnneip 22268 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ 𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}))
5147, 48, 49, 50syl3anc 1370 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}))
52 simpl1 1190 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
5352ad2antrr 723 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝐽 ∈ (TopOn‘𝑋))
5453, 31syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝐽 ∈ Top)
55 simprl 768 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
56 eqid 2738 . . . . . . . . . . . . . 14 𝐽 = 𝐽
5756neii1 22255 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑥 𝐽)
5854, 55, 57syl2anc 584 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑥 𝐽)
5956ntropn 22198 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
6054, 58, 59syl2anc 584 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
61 simpll3 1213 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → 𝑃𝑋)
6261adantr 481 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑃𝑋)
63 toponuni 22061 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
6453, 63syl 17 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑋 = 𝐽)
6562, 64eleqtrd 2841 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑃 𝐽)
6665snssd 4744 . . . . . . . . . . . . . 14 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → {𝑃} ⊆ 𝐽)
6756neiint 22253 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝐽𝑥 𝐽) → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥)))
6854, 66, 58, 67syl3anc 1370 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥)))
6955, 68mpbid 231 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → {𝑃} ⊆ ((int‘𝐽)‘𝑥))
70 snssg 4720 . . . . . . . . . . . . 13 (𝑃𝑋 → (𝑃 ∈ ((int‘𝐽)‘𝑥) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥)))
7162, 70syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝑃 ∈ ((int‘𝐽)‘𝑥) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥)))
7269, 71mpbird 256 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → 𝑃 ∈ ((int‘𝐽)‘𝑥))
7356ntrss2 22206 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
7454, 58, 73syl2anc 584 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
75 imass2 6012 . . . . . . . . . . . . 13 (((int‘𝐽)‘𝑥) ⊆ 𝑥 → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ (𝐹𝑥))
7674, 75syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ (𝐹𝑥))
77 simprr 770 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝐹𝑥) ⊆ 𝑦)
7876, 77sstrd 3932 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)
79 eleq2 2827 . . . . . . . . . . . . 13 (𝑧 = ((int‘𝐽)‘𝑥) → (𝑃𝑧𝑃 ∈ ((int‘𝐽)‘𝑥)))
80 imaeq2 5967 . . . . . . . . . . . . . 14 (𝑧 = ((int‘𝐽)‘𝑥) → (𝐹𝑧) = (𝐹 “ ((int‘𝐽)‘𝑥)))
8180sseq1d 3953 . . . . . . . . . . . . 13 (𝑧 = ((int‘𝐽)‘𝑥) → ((𝐹𝑧) ⊆ 𝑦 ↔ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦))
8279, 81anbi12d 631 . . . . . . . . . . . 12 (𝑧 = ((int‘𝐽)‘𝑥) → ((𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ ((int‘𝐽)‘𝑥) ∧ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)))
8382rspcev 3561 . . . . . . . . . . 11 ((((int‘𝐽)‘𝑥) ∈ 𝐽 ∧ (𝑃 ∈ ((int‘𝐽)‘𝑥) ∧ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))
8460, 72, 78, 83syl12anc 834 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹𝑥) ⊆ 𝑦)) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))
8584rexlimdvaa 3213 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → (∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
8651, 85embantd 59 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦)) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))
8786ex 413 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))))
8887com23 86 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → ((𝑦𝐾 ∧ (𝐹𝑃) ∈ 𝑦) → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))))
8988exp4a 432 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → (𝑦𝐾 → ((𝐹𝑃) ∈ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))))
9089ralimdv2 3107 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦 → ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦))))
9190imdistanda 572 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))))
92 iscnp 22386 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑧𝐽 (𝑃𝑧 ∧ (𝐹𝑧) ⊆ 𝑦)))))
9391, 92sylibrd 258 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)))
9445, 93impbid 211 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹𝑥) ⊆ 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3888  {csn 4563   cuni 4841  cima 5594  wf 6431  cfv 6435  (class class class)co 7277  Topctop 22040  TopOnctopon 22057  intcnt 22166  neicnei 22246   CnP ccnp 22374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-ov 7280  df-oprab 7281  df-mpo 7282  df-1st 7831  df-2nd 7832  df-map 8615  df-top 22041  df-topon 22058  df-ntr 22169  df-nei 22247  df-cnp 22377
This theorem is referenced by:  cnnei  22431
  Copyright terms: Public domain W3C validator