Step | Hyp | Ref
| Expression |
1 | | cnpf2 22399 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
2 | 1 | 3expa 1117 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
3 | 2 | 3adantl3 1167 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
4 | | simplr 766 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
5 | | simpll2 1212 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐾 ∈ (TopOn‘𝑌)) |
6 | | topontop 22060 |
. . . . . . . . 9
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
7 | 5, 6 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐾 ∈ Top) |
8 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ 𝐾 =
∪ 𝐾 |
9 | 8 | neii1 22255 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑦 ⊆ ∪ 𝐾) |
10 | 7, 9 | sylancom 588 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑦 ⊆ ∪ 𝐾) |
11 | 8 | ntropn 22198 |
. . . . . . . 8
⊢ ((𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾)
→ ((int‘𝐾)‘𝑦) ∈ 𝐾) |
12 | 7, 10, 11 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ((int‘𝐾)‘𝑦) ∈ 𝐾) |
13 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) |
14 | 3 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐹:𝑋⟶𝑌) |
15 | | simpll3 1213 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑃 ∈ 𝑋) |
16 | 14, 15 | ffvelrnd 6964 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝐹‘𝑃) ∈ 𝑌) |
17 | | toponuni 22061 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
18 | 5, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑌 = ∪ 𝐾) |
19 | 16, 18 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝐹‘𝑃) ∈ ∪ 𝐾) |
20 | 19 | snssd 4744 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → {(𝐹‘𝑃)} ⊆ ∪
𝐾) |
21 | 8 | neiint 22253 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Top ∧ {(𝐹‘𝑃)} ⊆ ∪
𝐾 ∧ 𝑦 ⊆ ∪ 𝐾) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) ↔ {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦))) |
22 | 7, 20, 10, 21 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) ↔ {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦))) |
23 | 13, 22 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦)) |
24 | | fvex 6789 |
. . . . . . . . 9
⊢ (𝐹‘𝑃) ∈ V |
25 | 24 | snss 4721 |
. . . . . . . 8
⊢ ((𝐹‘𝑃) ∈ ((int‘𝐾)‘𝑦) ↔ {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦)) |
26 | 23, 25 | sylibr 233 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝐹‘𝑃) ∈ ((int‘𝐾)‘𝑦)) |
27 | | cnpimaex 22405 |
. . . . . . 7
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ ((int‘𝐾)‘𝑦) ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ ((int‘𝐾)‘𝑦)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦))) |
28 | 4, 12, 26, 27 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦))) |
29 | | simpl1 1190 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘𝑋)) |
30 | 29 | ad2antrr 723 |
. . . . . . . 8
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝐽 ∈ (TopOn‘𝑋)) |
31 | | topontop 22060 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
32 | 30, 31 | syl 17 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝐽 ∈ Top) |
33 | | simprl 768 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑥 ∈ 𝐽) |
34 | | simprrl 778 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑃 ∈ 𝑥) |
35 | | opnneip 22268 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) |
36 | 32, 33, 34, 35 | syl3anc 1370 |
. . . . . 6
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) |
37 | | simprrr 779 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)) |
38 | 8 | ntrss2 22206 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾)
→ ((int‘𝐾)‘𝑦) ⊆ 𝑦) |
39 | 7, 10, 38 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ((int‘𝐾)‘𝑦) ⊆ 𝑦) |
40 | 39 | adantr 481 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → ((int‘𝐾)‘𝑦) ⊆ 𝑦) |
41 | 37, 40 | sstrd 3932 |
. . . . . 6
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → (𝐹 “ 𝑥) ⊆ 𝑦) |
42 | 28, 36, 41 | reximssdv 3204 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) |
43 | 42 | ralrimiva 3103 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) |
44 | 3, 43 | jca 512 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦)) |
45 | 44 | ex 413 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦))) |
46 | | simpll2 1212 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝐾 ∈ (TopOn‘𝑌)) |
47 | 46, 6 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝐾 ∈ Top) |
48 | | simprl 768 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝑦 ∈ 𝐾) |
49 | | simprr 770 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → (𝐹‘𝑃) ∈ 𝑦) |
50 | | opnneip 22268 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Top ∧ 𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) |
51 | 47, 48, 49, 50 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) |
52 | | simpl1 1190 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
53 | 52 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝐽 ∈ (TopOn‘𝑋)) |
54 | 53, 31 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝐽 ∈ Top) |
55 | | simprl 768 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) |
56 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐽 =
∪ 𝐽 |
57 | 56 | neii1 22255 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑥 ⊆ ∪ 𝐽) |
58 | 54, 55, 57 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑥 ⊆ ∪ 𝐽) |
59 | 56 | ntropn 22198 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑥) ∈ 𝐽) |
60 | 54, 58, 59 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ((int‘𝐽)‘𝑥) ∈ 𝐽) |
61 | | simpll3 1213 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝑃 ∈ 𝑋) |
62 | 61 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑃 ∈ 𝑋) |
63 | | toponuni 22061 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
64 | 53, 63 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑋 = ∪ 𝐽) |
65 | 62, 64 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑃 ∈ ∪ 𝐽) |
66 | 65 | snssd 4744 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → {𝑃} ⊆ ∪ 𝐽) |
67 | 56 | neiint 22253 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ {𝑃} ⊆ ∪ 𝐽
∧ 𝑥 ⊆ ∪ 𝐽)
→ (𝑥 ∈
((nei‘𝐽)‘{𝑃}) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥))) |
68 | 54, 66, 58, 67 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥))) |
69 | 55, 68 | mpbid 231 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → {𝑃} ⊆ ((int‘𝐽)‘𝑥)) |
70 | | snssg 4720 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ ((int‘𝐽)‘𝑥) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥))) |
71 | 62, 70 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝑃 ∈ ((int‘𝐽)‘𝑥) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥))) |
72 | 69, 71 | mpbird 256 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑃 ∈ ((int‘𝐽)‘𝑥)) |
73 | 56 | ntrss2 22206 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑥) ⊆ 𝑥) |
74 | 54, 58, 73 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ((int‘𝐽)‘𝑥) ⊆ 𝑥) |
75 | | imass2 6012 |
. . . . . . . . . . . . 13
⊢
(((int‘𝐽)‘𝑥) ⊆ 𝑥 → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ (𝐹 “ 𝑥)) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ (𝐹 “ 𝑥)) |
77 | | simprr 770 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝐹 “ 𝑥) ⊆ 𝑦) |
78 | 76, 77 | sstrd 3932 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦) |
79 | | eleq2 2827 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((int‘𝐽)‘𝑥) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ ((int‘𝐽)‘𝑥))) |
80 | | imaeq2 5967 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ((int‘𝐽)‘𝑥) → (𝐹 “ 𝑧) = (𝐹 “ ((int‘𝐽)‘𝑥))) |
81 | 80 | sseq1d 3953 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((int‘𝐽)‘𝑥) → ((𝐹 “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)) |
82 | 79, 81 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((int‘𝐽)‘𝑥) → ((𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ ((int‘𝐽)‘𝑥) ∧ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦))) |
83 | 82 | rspcev 3561 |
. . . . . . . . . . 11
⊢
((((int‘𝐽)‘𝑥) ∈ 𝐽 ∧ (𝑃 ∈ ((int‘𝐽)‘𝑥) ∧ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)) |
84 | 60, 72, 78, 83 | syl12anc 834 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)) |
85 | 84 | rexlimdvaa 3213 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → (∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) |
86 | 51, 85 | embantd 59 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) |
87 | 86 | ex 413 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)))) |
88 | 87 | com23 86 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → ((𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)))) |
89 | 88 | exp4a 432 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → (𝑦 ∈ 𝐾 → ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))))) |
90 | 89 | ralimdv2 3107 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦 → ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)))) |
91 | 90 | imdistanda 572 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))))) |
92 | | iscnp 22386 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))))) |
93 | 91, 92 | sylibrd 258 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) |
94 | 45, 93 | impbid 211 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦))) |