| Step | Hyp | Ref
| Expression |
| 1 | | cnpf2 23193 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
| 2 | 1 | 3expa 1118 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
| 3 | 2 | 3adantl3 1169 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
| 4 | | simplr 768 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
| 5 | | simpll2 1214 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐾 ∈ (TopOn‘𝑌)) |
| 6 | | topontop 22856 |
. . . . . . . . 9
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
| 7 | 5, 6 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐾 ∈ Top) |
| 8 | | eqid 2736 |
. . . . . . . . . 10
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 9 | 8 | neii1 23049 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑦 ⊆ ∪ 𝐾) |
| 10 | 7, 9 | sylancom 588 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑦 ⊆ ∪ 𝐾) |
| 11 | 8 | ntropn 22992 |
. . . . . . . 8
⊢ ((𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾)
→ ((int‘𝐾)‘𝑦) ∈ 𝐾) |
| 12 | 7, 10, 11 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ((int‘𝐾)‘𝑦) ∈ 𝐾) |
| 13 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) |
| 14 | 3 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝐹:𝑋⟶𝑌) |
| 15 | | simpll3 1215 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑃 ∈ 𝑋) |
| 16 | 14, 15 | ffvelcdmd 7080 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝐹‘𝑃) ∈ 𝑌) |
| 17 | | toponuni 22857 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
| 18 | 5, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → 𝑌 = ∪ 𝐾) |
| 19 | 16, 18 | eleqtrd 2837 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝐹‘𝑃) ∈ ∪ 𝐾) |
| 20 | 19 | snssd 4790 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → {(𝐹‘𝑃)} ⊆ ∪
𝐾) |
| 21 | 8 | neiint 23047 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Top ∧ {(𝐹‘𝑃)} ⊆ ∪
𝐾 ∧ 𝑦 ⊆ ∪ 𝐾) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) ↔ {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦))) |
| 22 | 7, 20, 10, 21 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) ↔ {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦))) |
| 23 | 13, 22 | mpbid 232 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦)) |
| 24 | | fvex 6894 |
. . . . . . . . 9
⊢ (𝐹‘𝑃) ∈ V |
| 25 | 24 | snss 4766 |
. . . . . . . 8
⊢ ((𝐹‘𝑃) ∈ ((int‘𝐾)‘𝑦) ↔ {(𝐹‘𝑃)} ⊆ ((int‘𝐾)‘𝑦)) |
| 26 | 23, 25 | sylibr 234 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → (𝐹‘𝑃) ∈ ((int‘𝐾)‘𝑦)) |
| 27 | | cnpimaex 23199 |
. . . . . . 7
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ ((int‘𝐾)‘𝑦) ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ ((int‘𝐾)‘𝑦)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦))) |
| 28 | 4, 12, 26, 27 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦))) |
| 29 | | simpl1 1192 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 30 | 29 | ad2antrr 726 |
. . . . . . . 8
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 31 | | topontop 22856 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 32 | 30, 31 | syl 17 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝐽 ∈ Top) |
| 33 | | simprl 770 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑥 ∈ 𝐽) |
| 34 | | simprrl 780 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑃 ∈ 𝑥) |
| 35 | | opnneip 23062 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑃 ∈ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) |
| 36 | 32, 33, 34, 35 | syl3anc 1373 |
. . . . . 6
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) |
| 37 | | simprrr 781 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)) |
| 38 | 8 | ntrss2 23000 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾)
→ ((int‘𝐾)‘𝑦) ⊆ 𝑦) |
| 39 | 7, 10, 38 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ((int‘𝐾)‘𝑦) ⊆ 𝑦) |
| 40 | 39 | adantr 480 |
. . . . . . 7
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → ((int‘𝐾)‘𝑦) ⊆ 𝑦) |
| 41 | 37, 40 | sstrd 3974 |
. . . . . 6
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) ∧ (𝑥 ∈ 𝐽 ∧ (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ ((int‘𝐾)‘𝑦)))) → (𝐹 “ 𝑥) ⊆ 𝑦) |
| 42 | 28, 36, 41 | reximssdv 3159 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) |
| 43 | 42 | ralrimiva 3133 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) |
| 44 | 3, 43 | jca 511 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦)) |
| 45 | 44 | ex 412 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦))) |
| 46 | | simpll2 1214 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝐾 ∈ (TopOn‘𝑌)) |
| 47 | 46, 6 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝐾 ∈ Top) |
| 48 | | simprl 770 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝑦 ∈ 𝐾) |
| 49 | | simprr 772 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → (𝐹‘𝑃) ∈ 𝑦) |
| 50 | | opnneip 23062 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Top ∧ 𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) |
| 51 | 47, 48, 49, 50 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})) |
| 52 | | simpl1 1192 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
| 53 | 52 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 54 | 53, 31 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝐽 ∈ Top) |
| 55 | | simprl 770 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) |
| 56 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 57 | 56 | neii1 23049 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑥 ⊆ ∪ 𝐽) |
| 58 | 54, 55, 57 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑥 ⊆ ∪ 𝐽) |
| 59 | 56 | ntropn 22992 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑥) ∈ 𝐽) |
| 60 | 54, 58, 59 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ((int‘𝐽)‘𝑥) ∈ 𝐽) |
| 61 | | simpll3 1215 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → 𝑃 ∈ 𝑋) |
| 62 | 61 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑃 ∈ 𝑋) |
| 63 | | toponuni 22857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 64 | 53, 63 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑋 = ∪ 𝐽) |
| 65 | 62, 64 | eleqtrd 2837 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑃 ∈ ∪ 𝐽) |
| 66 | 65 | snssd 4790 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → {𝑃} ⊆ ∪ 𝐽) |
| 67 | 56 | neiint 23047 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ {𝑃} ⊆ ∪ 𝐽
∧ 𝑥 ⊆ ∪ 𝐽)
→ (𝑥 ∈
((nei‘𝐽)‘{𝑃}) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥))) |
| 68 | 54, 66, 58, 67 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥))) |
| 69 | 55, 68 | mpbid 232 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → {𝑃} ⊆ ((int‘𝐽)‘𝑥)) |
| 70 | | snssg 4764 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ ((int‘𝐽)‘𝑥) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥))) |
| 71 | 62, 70 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝑃 ∈ ((int‘𝐽)‘𝑥) ↔ {𝑃} ⊆ ((int‘𝐽)‘𝑥))) |
| 72 | 69, 71 | mpbird 257 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → 𝑃 ∈ ((int‘𝐽)‘𝑥)) |
| 73 | 56 | ntrss2 23000 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑥) ⊆ 𝑥) |
| 74 | 54, 58, 73 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ((int‘𝐽)‘𝑥) ⊆ 𝑥) |
| 75 | | imass2 6094 |
. . . . . . . . . . . . 13
⊢
(((int‘𝐽)‘𝑥) ⊆ 𝑥 → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ (𝐹 “ 𝑥)) |
| 76 | 74, 75 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ (𝐹 “ 𝑥)) |
| 77 | | simprr 772 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝐹 “ 𝑥) ⊆ 𝑦) |
| 78 | 76, 77 | sstrd 3974 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦) |
| 79 | | eleq2 2824 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((int‘𝐽)‘𝑥) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ ((int‘𝐽)‘𝑥))) |
| 80 | | imaeq2 6048 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ((int‘𝐽)‘𝑥) → (𝐹 “ 𝑧) = (𝐹 “ ((int‘𝐽)‘𝑥))) |
| 81 | 80 | sseq1d 3995 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((int‘𝐽)‘𝑥) → ((𝐹 “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)) |
| 82 | 79, 81 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((int‘𝐽)‘𝑥) → ((𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ ((int‘𝐽)‘𝑥) ∧ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦))) |
| 83 | 82 | rspcev 3606 |
. . . . . . . . . . 11
⊢
((((int‘𝐽)‘𝑥) ∈ 𝐽 ∧ (𝑃 ∈ ((int‘𝐽)‘𝑥) ∧ (𝐹 “ ((int‘𝐽)‘𝑥)) ⊆ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)) |
| 84 | 60, 72, 78, 83 | syl12anc 836 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) ∧ (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)) |
| 85 | 84 | rexlimdvaa 3143 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → (∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) |
| 86 | 51, 85 | embantd 59 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦)) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))) |
| 87 | 86 | ex 412 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)))) |
| 88 | 87 | com23 86 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → ((𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦) → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)))) |
| 89 | 88 | exp4a 431 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)}) → ∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → (𝑦 ∈ 𝐾 → ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))))) |
| 90 | 89 | ralimdv2 3150 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦 → ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦)))) |
| 91 | 90 | imdistanda 571 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))))) |
| 92 | | iscnp 23180 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ 𝐽 (𝑃 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ 𝑦))))) |
| 93 | 91, 92 | sylibrd 259 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) |
| 94 | 45, 93 | impbid 212 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦))) |