MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2lem5 Structured version   Visualization version   GIF version

Theorem ovolicc2lem5 24885
Description: Lemma for ovolicc2 24886. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolicc2.5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolicc2.6 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
ovolicc2.7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
ovolicc2.8 (𝜑𝐺:𝑈⟶ℕ)
ovolicc2.9 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
ovolicc2.10 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
Assertion
Ref Expression
ovolicc2lem5 (𝜑 → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑢,𝑡,𝐴   𝑡,𝐵,𝑢   𝑡,𝐹   𝑡,𝐺   𝜑,𝑡   𝑡,𝑇   𝑡,𝑈,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝑆(𝑢,𝑡)   𝑇(𝑢)   𝐹(𝑢)   𝐺(𝑢)

Proof of Theorem ovolicc2lem5
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc2.7 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
2 ovolicc.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
32rexrd 11205 . . . . 5 (𝜑𝐴 ∈ ℝ*)
4 ovolicc.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
54rexrd 11205 . . . . 5 (𝜑𝐵 ∈ ℝ*)
6 ovolicc.3 . . . . 5 (𝜑𝐴𝐵)
7 lbicc2 13381 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
83, 5, 6, 7syl3anc 1371 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
91, 8sseldd 3945 . . 3 (𝜑𝐴 𝑈)
10 eluni2 4869 . . 3 (𝐴 𝑈 ↔ ∃𝑧𝑈 𝐴𝑧)
119, 10sylib 217 . 2 (𝜑 → ∃𝑧𝑈 𝐴𝑧)
12 ovolicc2.6 . . . . . . 7 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
1312elin2d 4159 . . . . . 6 (𝜑𝑈 ∈ Fin)
14 ovolicc2.10 . . . . . . 7 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
1514ssrab3 4040 . . . . . 6 𝑇𝑈
16 ssfi 9117 . . . . . 6 ((𝑈 ∈ Fin ∧ 𝑇𝑈) → 𝑇 ∈ Fin)
1713, 15, 16sylancl 586 . . . . 5 (𝜑𝑇 ∈ Fin)
181adantr 481 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐴[,]𝐵) ⊆ 𝑈)
19 ovolicc2.8 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝑈⟶ℕ)
20 ineq1 4165 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑡 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑡 ∩ (𝐴[,]𝐵)))
2120neeq1d 3003 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑡 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅))
2221, 14elrab2 3648 . . . . . . . . . . . . . . . 16 (𝑡𝑇 ↔ (𝑡𝑈 ∧ (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅))
2322simplbi 498 . . . . . . . . . . . . . . 15 (𝑡𝑇𝑡𝑈)
24 ffvelcdm 7032 . . . . . . . . . . . . . . 15 ((𝐺:𝑈⟶ℕ ∧ 𝑡𝑈) → (𝐺𝑡) ∈ ℕ)
2519, 23, 24syl2an 596 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐺𝑡) ∈ ℕ)
26 ovolicc2.5 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2726ffvelcdmda 7035 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺𝑡) ∈ ℕ) → (𝐹‘(𝐺𝑡)) ∈ ( ≤ ∩ (ℝ × ℝ)))
2825, 27syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝐹‘(𝐺𝑡)) ∈ ( ≤ ∩ (ℝ × ℝ)))
2928elin2d 4159 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ))
30 xp2nd 7954 . . . . . . . . . . . 12 ((𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
3129, 30syl 17 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
324adantr 481 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝐵 ∈ ℝ)
3331, 32ifcld 4532 . . . . . . . . . 10 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ)
3422simprbi 497 . . . . . . . . . . . . . 14 (𝑡𝑇 → (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅)
3534adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅)
36 n0 4306 . . . . . . . . . . . . 13 ((𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))
3735, 36sylib 217 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → ∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))
382adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴 ∈ ℝ)
39 simprr 771 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))
4039elin2d 4159 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝐴[,]𝐵))
414adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐵 ∈ ℝ)
42 elicc2 13329 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
432, 41, 42syl2an2r 683 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4440, 43mpbid 231 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4544simp1d 1142 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ ℝ)
4629adantrr 715 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ))
4746, 30syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
4844simp2d 1143 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴𝑦)
4939elin1d 4158 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦𝑡)
5025adantrr 715 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐺𝑡) ∈ ℕ)
51 fvco3 6940 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐺𝑡) ∈ ℕ) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = ((,)‘(𝐹‘(𝐺𝑡))))
5226, 50, 51syl2an2r 683 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = ((,)‘(𝐹‘(𝐺𝑡))))
53 ovolicc2.9 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
5423, 53sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡𝑇) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
5554adantrr 715 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
56 1st2nd2 7960 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ) → (𝐹‘(𝐺𝑡)) = ⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩)
5746, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐹‘(𝐺𝑡)) = ⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩)
5857fveq2d 6846 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → ((,)‘(𝐹‘(𝐺𝑡))) = ((,)‘⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩))
59 df-ov 7360 . . . . . . . . . . . . . . . . . . . . 21 ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) = ((,)‘⟨(1st ‘(𝐹‘(𝐺𝑡))), (2nd ‘(𝐹‘(𝐺𝑡)))⟩)
6058, 59eqtr4di 2794 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → ((,)‘(𝐹‘(𝐺𝑡))) = ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))))
6152, 55, 603eqtr3d 2784 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑡 = ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))))
6249, 61eleqtrd 2840 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))))
63 xp1st 7953 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝐺𝑡)) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
6446, 63syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ)
65 rexr 11201 . . . . . . . . . . . . . . . . . . . 20 ((1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ → (1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ*)
66 rexr 11201 . . . . . . . . . . . . . . . . . . . 20 ((2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ → (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ*)
67 elioo2 13305 . . . . . . . . . . . . . . . . . . . 20 (((1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ* ∧ (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ*) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))))
6865, 66, 67syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((1st ‘(𝐹‘(𝐺𝑡))) ∈ ℝ ∧ (2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))))
6964, 47, 68syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺𝑡)))(,)(2nd ‘(𝐹‘(𝐺𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))))
7062, 69mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺𝑡))) < 𝑦𝑦 < (2nd ‘(𝐹‘(𝐺𝑡)))))
7170simp3d 1144 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 < (2nd ‘(𝐹‘(𝐺𝑡))))
7245, 47, 71ltled 11303 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ≤ (2nd ‘(𝐹‘(𝐺𝑡))))
7338, 45, 47, 48, 72letrd 11312 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑡𝑇𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))))
7473expr 457 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → (𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡)))))
7574exlimdv 1936 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡)))))
7637, 75mpd 15 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))))
776adantr 481 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 𝐴𝐵)
78 breq2 5109 . . . . . . . . . . . 12 ((2nd ‘(𝐹‘(𝐺𝑡))) = if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) → (𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))) ↔ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵)))
79 breq2 5109 . . . . . . . . . . . 12 (𝐵 = if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) → (𝐴𝐵𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵)))
8078, 79ifboth 4525 . . . . . . . . . . 11 ((𝐴 ≤ (2nd ‘(𝐹‘(𝐺𝑡))) ∧ 𝐴𝐵) → 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵))
8176, 77, 80syl2anc 584 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵))
82 min2 13109 . . . . . . . . . . 11 (((2nd ‘(𝐹‘(𝐺𝑡))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)
8331, 32, 82syl2anc 584 . . . . . . . . . 10 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)
84 elicc2 13329 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)))
852, 4, 84syl2anc 584 . . . . . . . . . . 11 (𝜑 → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)))
8685adantr 481 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ≤ 𝐵)))
8733, 81, 83, 86mpbir3and 1342 . . . . . . . . 9 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵))
8818, 87sseldd 3945 . . . . . . . 8 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑈)
89 eluni2 4869 . . . . . . . 8 (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑈 ↔ ∃𝑥𝑈 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
9088, 89sylib 217 . . . . . . 7 ((𝜑𝑡𝑇) → ∃𝑥𝑈 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
91 simprl 769 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → 𝑥𝑈)
92 simprr 771 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
9387adantr 481 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵))
94 inelcm 4424 . . . . . . . . 9 ((if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐴[,]𝐵)) → (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅)
9592, 93, 94syl2anc 584 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅)
96 ineq1 4165 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑥 ∩ (𝐴[,]𝐵)))
9796neeq1d 3003 . . . . . . . . 9 (𝑢 = 𝑥 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅))
9897, 14elrab2 3648 . . . . . . . 8 (𝑥𝑇 ↔ (𝑥𝑈 ∧ (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅))
9991, 95, 98sylanbrc 583 . . . . . . 7 (((𝜑𝑡𝑇) ∧ (𝑥𝑈 ∧ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)) → 𝑥𝑇)
10090, 99, 92reximssdv 3169 . . . . . 6 ((𝜑𝑡𝑇) → ∃𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
101100ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑡𝑇𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥)
102 eleq2 2826 . . . . . 6 (𝑥 = (𝑡) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥 ↔ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
103102ac6sfi 9231 . . . . 5 ((𝑇 ∈ Fin ∧ ∀𝑡𝑇𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ 𝑥) → ∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
10417, 101, 103syl2anc 584 . . . 4 (𝜑 → ∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
105104adantr 481 . . 3 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → ∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
106 2fveq3 6847 . . . . . . . . . . 11 (𝑥 = 𝑡 → (𝐹‘(𝐺𝑥)) = (𝐹‘(𝐺𝑡)))
107106fveq2d 6846 . . . . . . . . . 10 (𝑥 = 𝑡 → (2nd ‘(𝐹‘(𝐺𝑥))) = (2nd ‘(𝐹‘(𝐺𝑡))))
108107breq1d 5115 . . . . . . . . 9 (𝑥 = 𝑡 → ((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵 ↔ (2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵))
109108, 107ifbieq1d 4510 . . . . . . . 8 (𝑥 = 𝑡 → if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) = if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵))
110 fveq2 6842 . . . . . . . 8 (𝑥 = 𝑡 → (𝑥) = (𝑡))
111109, 110eleq12d 2832 . . . . . . 7 (𝑥 = 𝑡 → (if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) ↔ if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)))
112111cbvralvw 3225 . . . . . 6 (∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) ↔ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡))
1132adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴 ∈ ℝ)
1144adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐵 ∈ ℝ)
1156adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴𝐵)
116 ovolicc2.4 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
11726adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
11812adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
1191adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → (𝐴[,]𝐵) ⊆ 𝑈)
12019adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐺:𝑈⟶ℕ)
12153adantlr 713 . . . . . . . . 9 (((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) ∧ 𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
122 simprrl 779 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → :𝑇𝑇)
123 simprrr 780 . . . . . . . . . 10 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥))
124111rspccva 3580 . . . . . . . . . 10 ((∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) ∧ 𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡))
125123, 124sylan 580 . . . . . . . . 9 (((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) ∧ 𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡))
126 simprlr 778 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴𝑧)
127 simprll 777 . . . . . . . . . 10 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝑧𝑈)
1288adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝐴 ∈ (𝐴[,]𝐵))
129 inelcm 4424 . . . . . . . . . . 11 ((𝐴𝑧𝐴 ∈ (𝐴[,]𝐵)) → (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅)
130126, 128, 129syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅)
131 ineq1 4165 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑧 ∩ (𝐴[,]𝐵)))
132131neeq1d 3003 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅))
133132, 14elrab2 3648 . . . . . . . . . 10 (𝑧𝑇 ↔ (𝑧𝑈 ∧ (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅))
134127, 130, 133sylanbrc 583 . . . . . . . . 9 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → 𝑧𝑇)
135 eqid 2736 . . . . . . . . 9 seq1(( ∘ 1st ), (ℕ × {𝑧})) = seq1(( ∘ 1st ), (ℕ × {𝑧}))
136 fveq2 6842 . . . . . . . . . . 11 (𝑚 = 𝑛 → (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚) = (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑛))
137136eleq2d 2823 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚) ↔ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑛)))
138137cbvrabv 3417 . . . . . . . . 9 {𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚)} = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑛)}
139 eqid 2736 . . . . . . . . 9 inf({𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚)}, ℝ, < ) = inf({𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1(( ∘ 1st ), (ℕ × {𝑧}))‘𝑚)}, ℝ, < )
140113, 114, 115, 116, 117, 118, 119, 120, 121, 14, 122, 125, 126, 134, 135, 138, 139ovolicc2lem4 24884 . . . . . . . 8 ((𝜑 ∧ ((𝑧𝑈𝐴𝑧) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥)))) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
141140anassrs 468 . . . . . . 7 (((𝜑 ∧ (𝑧𝑈𝐴𝑧)) ∧ (:𝑇𝑇 ∧ ∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥))) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
142141expr 457 . . . . . 6 (((𝜑 ∧ (𝑧𝑈𝐴𝑧)) ∧ :𝑇𝑇) → (∀𝑥𝑇 if((2nd ‘(𝐹‘(𝐺𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑥))), 𝐵) ∈ (𝑥) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
143112, 142biimtrrid 242 . . . . 5 (((𝜑 ∧ (𝑧𝑈𝐴𝑧)) ∧ :𝑇𝑇) → (∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
144143expimpd 454 . . . 4 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → ((:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
145144exlimdv 1936 . . 3 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → (∃(:𝑇𝑇 ∧ ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝑡)) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < )))
146105, 145mpd 15 . 2 ((𝜑 ∧ (𝑧𝑈𝐴𝑧)) → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
14711, 146rexlimddv 3158 1 (𝜑 → (𝐵𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  cin 3909  wss 3910  c0 4282  ifcif 4486  𝒫 cpw 4560  {csn 4586  cop 4592   cuni 4865   class class class wbr 5105   × cxp 5631  ran crn 5634  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  Fincfn 8883  supcsup 9376  infcinf 9377  cr 11050  1c1 11052   + caddc 11054  *cxr 11188   < clt 11189  cle 11190  cmin 11385  cn 12153  (,)cioo 13264  [,]cicc 13267  seqcseq 13906  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571
This theorem is referenced by:  ovolicc2  24886
  Copyright terms: Public domain W3C validator