| Step | Hyp | Ref
| Expression |
| 1 | | ovolicc2.7 |
. . . 4
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) |
| 2 | | ovolicc.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | rexrd 11290 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 4 | | ovolicc.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 5 | 4 | rexrd 11290 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 6 | | ovolicc.3 |
. . . . 5
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 7 | | lbicc2 13486 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 8 | 3, 5, 6, 7 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 9 | 1, 8 | sseldd 3964 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ∪ 𝑈) |
| 10 | | eluni2 4892 |
. . 3
⊢ (𝐴 ∈ ∪ 𝑈
↔ ∃𝑧 ∈
𝑈 𝐴 ∈ 𝑧) |
| 11 | 9, 10 | sylib 218 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ 𝑈 𝐴 ∈ 𝑧) |
| 12 | | ovolicc2.6 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) |
| 13 | 12 | elin2d 4185 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ Fin) |
| 14 | | ovolicc2.10 |
. . . . . . 7
⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} |
| 15 | 14 | ssrab3 4062 |
. . . . . 6
⊢ 𝑇 ⊆ 𝑈 |
| 16 | | ssfi 9192 |
. . . . . 6
⊢ ((𝑈 ∈ Fin ∧ 𝑇 ⊆ 𝑈) → 𝑇 ∈ Fin) |
| 17 | 13, 15, 16 | sylancl 586 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ Fin) |
| 18 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐴[,]𝐵) ⊆ ∪ 𝑈) |
| 19 | | ovolicc2.8 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺:𝑈⟶ℕ) |
| 20 | | ineq1 4193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = 𝑡 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑡 ∩ (𝐴[,]𝐵))) |
| 21 | 20 | neeq1d 2992 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = 𝑡 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅)) |
| 22 | 21, 14 | elrab2 3679 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝑇 ↔ (𝑡 ∈ 𝑈 ∧ (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅)) |
| 23 | 22 | simplbi 497 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝑇 → 𝑡 ∈ 𝑈) |
| 24 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺:𝑈⟶ℕ ∧ 𝑡 ∈ 𝑈) → (𝐺‘𝑡) ∈ ℕ) |
| 25 | 19, 23, 24 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑡) ∈ ℕ) |
| 26 | | ovolicc2.5 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 27 | 26 | ffvelcdmda 7079 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐺‘𝑡) ∈ ℕ) → (𝐹‘(𝐺‘𝑡)) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
| 28 | 25, 27 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘(𝐺‘𝑡)) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
| 29 | 28 | elin2d 4185 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘(𝐺‘𝑡)) ∈ (ℝ ×
ℝ)) |
| 30 | | xp2nd 8026 |
. . . . . . . . . . . 12
⊢ ((𝐹‘(𝐺‘𝑡)) ∈ (ℝ × ℝ) →
(2nd ‘(𝐹‘(𝐺‘𝑡))) ∈ ℝ) |
| 31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (2nd ‘(𝐹‘(𝐺‘𝑡))) ∈ ℝ) |
| 32 | 4 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝐵 ∈ ℝ) |
| 33 | 31, 32 | ifcld 4552 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ ℝ) |
| 34 | 22 | simprbi 496 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝑇 → (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅) |
| 35 | 34 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅) |
| 36 | | n0 4333 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵))) |
| 37 | 35, 36 | sylib 218 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵))) |
| 38 | 2 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴 ∈ ℝ) |
| 39 | | simprr 772 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵))) |
| 40 | 39 | elin2d 4185 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝐴[,]𝐵)) |
| 41 | 4 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐵 ∈ ℝ) |
| 42 | | elicc2 13433 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) |
| 43 | 2, 41, 42 | syl2an2r 685 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) |
| 44 | 40, 43 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵)) |
| 45 | 44 | simp1d 1142 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ ℝ) |
| 46 | 29 | adantrr 717 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐹‘(𝐺‘𝑡)) ∈ (ℝ ×
ℝ)) |
| 47 | 46, 30 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (2nd ‘(𝐹‘(𝐺‘𝑡))) ∈ ℝ) |
| 48 | 44 | simp2d 1143 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴 ≤ 𝑦) |
| 49 | 39 | elin1d 4184 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ 𝑡) |
| 50 | 25 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐺‘𝑡) ∈ ℕ) |
| 51 | | fvco3 6983 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ (𝐺‘𝑡) ∈ ℕ) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = ((,)‘(𝐹‘(𝐺‘𝑡)))) |
| 52 | 26, 50, 51 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = ((,)‘(𝐹‘(𝐺‘𝑡)))) |
| 53 | | ovolicc2.9 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) |
| 54 | 23, 53 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) |
| 55 | 54 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) |
| 56 | | 1st2nd2 8032 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘(𝐺‘𝑡)) ∈ (ℝ × ℝ) →
(𝐹‘(𝐺‘𝑡)) = 〈(1st ‘(𝐹‘(𝐺‘𝑡))), (2nd ‘(𝐹‘(𝐺‘𝑡)))〉) |
| 57 | 46, 56 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝐹‘(𝐺‘𝑡)) = 〈(1st ‘(𝐹‘(𝐺‘𝑡))), (2nd ‘(𝐹‘(𝐺‘𝑡)))〉) |
| 58 | 57 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → ((,)‘(𝐹‘(𝐺‘𝑡))) = ((,)‘〈(1st
‘(𝐹‘(𝐺‘𝑡))), (2nd ‘(𝐹‘(𝐺‘𝑡)))〉)) |
| 59 | | df-ov 7413 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((1st ‘(𝐹‘(𝐺‘𝑡)))(,)(2nd ‘(𝐹‘(𝐺‘𝑡)))) = ((,)‘〈(1st
‘(𝐹‘(𝐺‘𝑡))), (2nd ‘(𝐹‘(𝐺‘𝑡)))〉) |
| 60 | 58, 59 | eqtr4di 2789 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → ((,)‘(𝐹‘(𝐺‘𝑡))) = ((1st ‘(𝐹‘(𝐺‘𝑡)))(,)(2nd ‘(𝐹‘(𝐺‘𝑡))))) |
| 61 | 52, 55, 60 | 3eqtr3d 2779 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑡 = ((1st ‘(𝐹‘(𝐺‘𝑡)))(,)(2nd ‘(𝐹‘(𝐺‘𝑡))))) |
| 62 | 49, 61 | eleqtrd 2837 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ ((1st ‘(𝐹‘(𝐺‘𝑡)))(,)(2nd ‘(𝐹‘(𝐺‘𝑡))))) |
| 63 | | xp1st 8025 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘(𝐺‘𝑡)) ∈ (ℝ × ℝ) →
(1st ‘(𝐹‘(𝐺‘𝑡))) ∈ ℝ) |
| 64 | 46, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (1st ‘(𝐹‘(𝐺‘𝑡))) ∈ ℝ) |
| 65 | | rexr 11286 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘(𝐹‘(𝐺‘𝑡))) ∈ ℝ → (1st
‘(𝐹‘(𝐺‘𝑡))) ∈
ℝ*) |
| 66 | | rexr 11286 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘(𝐹‘(𝐺‘𝑡))) ∈ ℝ → (2nd
‘(𝐹‘(𝐺‘𝑡))) ∈
ℝ*) |
| 67 | | elioo2 13408 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘(𝐹‘(𝐺‘𝑡))) ∈ ℝ* ∧
(2nd ‘(𝐹‘(𝐺‘𝑡))) ∈ ℝ*) → (𝑦 ∈ ((1st
‘(𝐹‘(𝐺‘𝑡)))(,)(2nd ‘(𝐹‘(𝐺‘𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝑡))) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐹‘(𝐺‘𝑡)))))) |
| 68 | 65, 66, 67 | syl2an 596 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((1st ‘(𝐹‘(𝐺‘𝑡))) ∈ ℝ ∧ (2nd
‘(𝐹‘(𝐺‘𝑡))) ∈ ℝ) → (𝑦 ∈ ((1st
‘(𝐹‘(𝐺‘𝑡)))(,)(2nd ‘(𝐹‘(𝐺‘𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝑡))) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐹‘(𝐺‘𝑡)))))) |
| 69 | 64, 47, 68 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ((1st ‘(𝐹‘(𝐺‘𝑡)))(,)(2nd ‘(𝐹‘(𝐺‘𝑡)))) ↔ (𝑦 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝑡))) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐹‘(𝐺‘𝑡)))))) |
| 70 | 62, 69 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → (𝑦 ∈ ℝ ∧ (1st
‘(𝐹‘(𝐺‘𝑡))) < 𝑦 ∧ 𝑦 < (2nd ‘(𝐹‘(𝐺‘𝑡))))) |
| 71 | 70 | simp3d 1144 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 < (2nd ‘(𝐹‘(𝐺‘𝑡)))) |
| 72 | 45, 47, 71 | ltled 11388 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝑦 ≤ (2nd ‘(𝐹‘(𝐺‘𝑡)))) |
| 73 | 38, 45, 47, 48, 72 | letrd 11397 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ∧ 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)))) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺‘𝑡)))) |
| 74 | 73 | expr 456 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺‘𝑡))))) |
| 75 | 74 | exlimdv 1933 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (∃𝑦 𝑦 ∈ (𝑡 ∩ (𝐴[,]𝐵)) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺‘𝑡))))) |
| 76 | 37, 75 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝐴 ≤ (2nd ‘(𝐹‘(𝐺‘𝑡)))) |
| 77 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝐴 ≤ 𝐵) |
| 78 | | breq2 5128 |
. . . . . . . . . . . 12
⊢
((2nd ‘(𝐹‘(𝐺‘𝑡))) = if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) → (𝐴 ≤ (2nd ‘(𝐹‘(𝐺‘𝑡))) ↔ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵))) |
| 79 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ (𝐵 = if((2nd
‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) → (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵))) |
| 80 | 78, 79 | ifboth 4545 |
. . . . . . . . . . 11
⊢ ((𝐴 ≤ (2nd
‘(𝐹‘(𝐺‘𝑡))) ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵)) |
| 81 | 76, 77, 80 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵)) |
| 82 | | min2 13211 |
. . . . . . . . . . 11
⊢
(((2nd ‘(𝐹‘(𝐺‘𝑡))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((2nd
‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ≤ 𝐵) |
| 83 | 31, 32, 82 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ≤ 𝐵) |
| 84 | | elicc2 13433 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ≤ 𝐵))) |
| 85 | 2, 4, 84 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (if((2nd
‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ≤ 𝐵))) |
| 86 | 85 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐴[,]𝐵) ↔ (if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ ℝ ∧ 𝐴 ≤ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∧ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ≤ 𝐵))) |
| 87 | 33, 81, 83, 86 | mpbir3and 1343 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐴[,]𝐵)) |
| 88 | 18, 87 | sseldd 3964 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ ∪ 𝑈) |
| 89 | | eluni2 4892 |
. . . . . . . 8
⊢
(if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ ∪ 𝑈 ↔ ∃𝑥 ∈ 𝑈 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥) |
| 90 | 88, 89 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ∃𝑥 ∈ 𝑈 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥) |
| 91 | | simprl 770 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ (𝑥 ∈ 𝑈 ∧ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥)) → 𝑥 ∈ 𝑈) |
| 92 | | simprr 772 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ (𝑥 ∈ 𝑈 ∧ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥)) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥) |
| 93 | 87 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ (𝑥 ∈ 𝑈 ∧ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥)) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐴[,]𝐵)) |
| 94 | | inelcm 4445 |
. . . . . . . . 9
⊢
((if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥 ∧ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐴[,]𝐵)) → (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅) |
| 95 | 92, 93, 94 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ (𝑥 ∈ 𝑈 ∧ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥)) → (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅) |
| 96 | | ineq1 4193 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑥 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑥 ∩ (𝐴[,]𝐵))) |
| 97 | 96 | neeq1d 2992 |
. . . . . . . . 9
⊢ (𝑢 = 𝑥 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅)) |
| 98 | 97, 14 | elrab2 3679 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑇 ↔ (𝑥 ∈ 𝑈 ∧ (𝑥 ∩ (𝐴[,]𝐵)) ≠ ∅)) |
| 99 | 91, 95, 98 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ (𝑥 ∈ 𝑈 ∧ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥)) → 𝑥 ∈ 𝑇) |
| 100 | 90, 99, 92 | reximssdv 3159 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ∃𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥) |
| 101 | 100 | ralrimiva 3133 |
. . . . 5
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 ∃𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥) |
| 102 | | eleq2 2824 |
. . . . . 6
⊢ (𝑥 = (ℎ‘𝑡) → (if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥 ↔ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (ℎ‘𝑡))) |
| 103 | 102 | ac6sfi 9297 |
. . . . 5
⊢ ((𝑇 ∈ Fin ∧ ∀𝑡 ∈ 𝑇 ∃𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ 𝑥) → ∃ℎ(ℎ:𝑇⟶𝑇 ∧ ∀𝑡 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (ℎ‘𝑡))) |
| 104 | 17, 101, 103 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ∃ℎ(ℎ:𝑇⟶𝑇 ∧ ∀𝑡 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (ℎ‘𝑡))) |
| 105 | 104 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧)) → ∃ℎ(ℎ:𝑇⟶𝑇 ∧ ∀𝑡 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (ℎ‘𝑡))) |
| 106 | | 2fveq3 6886 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (𝐹‘(𝐺‘𝑥)) = (𝐹‘(𝐺‘𝑡))) |
| 107 | 106 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → (2nd ‘(𝐹‘(𝐺‘𝑥))) = (2nd ‘(𝐹‘(𝐺‘𝑡)))) |
| 108 | 107 | breq1d 5134 |
. . . . . . . . 9
⊢ (𝑥 = 𝑡 → ((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵 ↔ (2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵)) |
| 109 | 108, 107 | ifbieq1d 4530 |
. . . . . . . 8
⊢ (𝑥 = 𝑡 → if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) = if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵)) |
| 110 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑥 = 𝑡 → (ℎ‘𝑥) = (ℎ‘𝑡)) |
| 111 | 109, 110 | eleq12d 2829 |
. . . . . . 7
⊢ (𝑥 = 𝑡 → (if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥) ↔ if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (ℎ‘𝑡))) |
| 112 | 111 | cbvralvw 3224 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑇 if((2nd
‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥) ↔ ∀𝑡 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (ℎ‘𝑡)) |
| 113 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → 𝐴 ∈ ℝ) |
| 114 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → 𝐵 ∈ ℝ) |
| 115 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → 𝐴 ≤ 𝐵) |
| 116 | | ovolicc2.4 |
. . . . . . . . 9
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
| 117 | 26 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
| 118 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) |
| 119 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → (𝐴[,]𝐵) ⊆ ∪ 𝑈) |
| 120 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → 𝐺:𝑈⟶ℕ) |
| 121 | 53 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) |
| 122 | | simprrl 780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → ℎ:𝑇⟶𝑇) |
| 123 | | simprrr 781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)) |
| 124 | 111 | rspccva 3605 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝑇 if((2nd
‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥) ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (ℎ‘𝑡)) |
| 125 | 123, 124 | sylan 580 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (ℎ‘𝑡)) |
| 126 | | simprlr 779 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → 𝐴 ∈ 𝑧) |
| 127 | | simprll 778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → 𝑧 ∈ 𝑈) |
| 128 | 8 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 129 | | inelcm 4445 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑧 ∧ 𝐴 ∈ (𝐴[,]𝐵)) → (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅) |
| 130 | 126, 128,
129 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅) |
| 131 | | ineq1 4193 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑧 → (𝑢 ∩ (𝐴[,]𝐵)) = (𝑧 ∩ (𝐴[,]𝐵))) |
| 132 | 131 | neeq1d 2992 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑧 → ((𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅ ↔ (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅)) |
| 133 | 132, 14 | elrab2 3679 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑇 ↔ (𝑧 ∈ 𝑈 ∧ (𝑧 ∩ (𝐴[,]𝐵)) ≠ ∅)) |
| 134 | 127, 130,
133 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → 𝑧 ∈ 𝑇) |
| 135 | | eqid 2736 |
. . . . . . . . 9
⊢
seq1((ℎ ∘
1st ), (ℕ × {𝑧})) = seq1((ℎ ∘ 1st ), (ℕ ×
{𝑧})) |
| 136 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (seq1((ℎ ∘ 1st ), (ℕ ×
{𝑧}))‘𝑚) = (seq1((ℎ ∘ 1st ), (ℕ ×
{𝑧}))‘𝑛)) |
| 137 | 136 | eleq2d 2821 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (𝐵 ∈ (seq1((ℎ ∘ 1st ), (ℕ ×
{𝑧}))‘𝑚) ↔ 𝐵 ∈ (seq1((ℎ ∘ 1st ), (ℕ ×
{𝑧}))‘𝑛))) |
| 138 | 137 | cbvrabv 3431 |
. . . . . . . . 9
⊢ {𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1((ℎ ∘ 1st ),
(ℕ × {𝑧}))‘𝑚)} = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (seq1((ℎ ∘ 1st ), (ℕ ×
{𝑧}))‘𝑛)} |
| 139 | | eqid 2736 |
. . . . . . . . 9
⊢
inf({𝑚 ∈
ℕ ∣ 𝐵 ∈
(seq1((ℎ ∘
1st ), (ℕ × {𝑧}))‘𝑚)}, ℝ, < ) = inf({𝑚 ∈ ℕ ∣ 𝐵 ∈ (seq1((ℎ ∘ 1st ), (ℕ ×
{𝑧}))‘𝑚)}, ℝ, <
) |
| 140 | 113, 114,
115, 116, 117, 118, 119, 120, 121, 14, 122, 125, 126, 134, 135, 138, 139 | ovolicc2lem4 25478 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥)))) → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 141 | 140 | anassrs 467 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧)) ∧ (ℎ:𝑇⟶𝑇 ∧ ∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥))) → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 142 | 141 | expr 456 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧)) ∧ ℎ:𝑇⟶𝑇) → (∀𝑥 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑥))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑥))), 𝐵) ∈ (ℎ‘𝑥) → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, <
))) |
| 143 | 112, 142 | biimtrrid 243 |
. . . . 5
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧)) ∧ ℎ:𝑇⟶𝑇) → (∀𝑡 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (ℎ‘𝑡) → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, <
))) |
| 144 | 143 | expimpd 453 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧)) → ((ℎ:𝑇⟶𝑇 ∧ ∀𝑡 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (ℎ‘𝑡)) → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, <
))) |
| 145 | 144 | exlimdv 1933 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧)) → (∃ℎ(ℎ:𝑇⟶𝑇 ∧ ∀𝑡 ∈ 𝑇 if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (ℎ‘𝑡)) → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, <
))) |
| 146 | 105, 145 | mpd 15 |
. 2
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧)) → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, <
)) |
| 147 | 11, 146 | rexlimddv 3148 |
1
⊢ (𝜑 → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, <
)) |