Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundglb Structured version   Visualization version   GIF version

Theorem pellfundglb 42873
Description: If a real is larger than the fundamental solution, there is a nontrivial solution less than it. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellfundglb ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴

Proof of Theorem pellfundglb
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pellfundval 42868 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
213ad2ant1 1133 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
3 simp3 1138 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (PellFund‘𝐷) < 𝐴)
42, 3eqbrtrrd 5131 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) < 𝐴)
5 pellfundre 42869 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
653ad2ant1 1133 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (PellFund‘𝐷) ∈ ℝ)
72, 6eqeltrrd 2829 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) ∈ ℝ)
8 simp2 1137 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → 𝐴 ∈ ℝ)
97, 8ltnled 11321 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) < 𝐴 ↔ ¬ 𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )))
104, 9mpbid 232 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ¬ 𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
11 ssrab2 4043 . . . . . 6 {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷)
12 pell14qrre 42845 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ)
1312ex 412 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ ℝ))
1413ssrdv 3952 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ)
15143ad2ant1 1133 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (Pell14QR‘𝐷) ⊆ ℝ)
1611, 15sstrid 3958 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ)
17 pell1qrss14 42856 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
18173ad2ant1 1133 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
19 pellqrex 42867 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎)
20193ad2ant1 1133 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎)
21 ssrexv 4016 . . . . . . 7 ((Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷) → (∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎 → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎))
2218, 20, 21sylc 65 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)
23 rabn0 4352 . . . . . 6 ({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ↔ ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)
2422, 23sylibr 234 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅)
25 infmrgelbi 42866 . . . . . 6 ((({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥) → 𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
2625ex 412 . . . . 5 (({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ 𝐴 ∈ ℝ) → (∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )))
2716, 24, 8, 26syl3anc 1373 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )))
2810, 27mtod 198 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ¬ ∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥)
29 rexnal 3082 . . 3 (∃𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ¬ 𝐴𝑥 ↔ ¬ ∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥)
3028, 29sylibr 234 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ¬ 𝐴𝑥)
31 breq2 5111 . . . . 5 (𝑎 = 𝑥 → (1 < 𝑎 ↔ 1 < 𝑥))
3231elrab 3659 . . . 4 (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥))
33 simprl 770 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝑥 ∈ (Pell14QR‘𝐷))
34 1red 11175 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 1 ∈ ℝ)
35 simpl1 1192 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝐷 ∈ (ℕ ∖ ◻NN))
36 pell14qrre 42845 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑥 ∈ (Pell14QR‘𝐷)) → 𝑥 ∈ ℝ)
3735, 33, 36syl2anc 584 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝑥 ∈ ℝ)
38 simprr 772 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 1 < 𝑥)
3934, 37, 38ltled 11322 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 1 ≤ 𝑥)
4033, 39jca 511 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝑥))
41 elpell1qr2 42860 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑥 ∈ (Pell1QR‘𝐷) ↔ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝑥)))
4235, 41syl 17 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → (𝑥 ∈ (Pell1QR‘𝐷) ↔ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝑥)))
4340, 42mpbird 257 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝑥 ∈ (Pell1QR‘𝐷))
4432, 43sylan2b 594 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ 𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}) → 𝑥 ∈ (Pell1QR‘𝐷))
4544adantrr 717 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ (Pell1QR‘𝐷))
46 simpl1 1192 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝐷 ∈ (ℕ ∖ ◻NN))
47 simprl 770 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎})
4811, 47sselid 3944 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ (Pell14QR‘𝐷))
49 simpr 484 . . . . . . . 8 ((𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥) → 1 < 𝑥)
5049a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ((𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥) → 1 < 𝑥))
5132, 50biimtrid 242 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → 1 < 𝑥))
5251imp 406 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ 𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}) → 1 < 𝑥)
5352adantrr 717 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 1 < 𝑥)
54 pellfundlb 42872 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥) → (PellFund‘𝐷) ≤ 𝑥)
5546, 48, 53, 54syl3anc 1373 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (PellFund‘𝐷) ≤ 𝑥)
56 simprr 772 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → ¬ 𝐴𝑥)
5715adantr 480 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (Pell14QR‘𝐷) ⊆ ℝ)
5857, 48sseldd 3947 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ ℝ)
59 simpl2 1193 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝐴 ∈ ℝ)
6058, 59ltnled 11321 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
6156, 60mpbird 257 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 < 𝐴)
6255, 61jca 511 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → ((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))
6330, 45, 62reximssdv 3151 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  cdif 3911  wss 3914  c0 4296   class class class wbr 5107  cfv 6511  infcinf 9392  cr 11067  1c1 11069   < clt 11208  cle 11209  cn 12186  NNcsquarenn 42824  Pell1QRcpell1qr 42825  Pell14QRcpell14qr 42827  PellFundcpellfund 42828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ico 13312  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-numer 16705  df-denom 16706  df-squarenn 42829  df-pell1qr 42830  df-pell14qr 42831  df-pell1234qr 42832  df-pellfund 42833
This theorem is referenced by:  pellfundex  42874
  Copyright terms: Public domain W3C validator