Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundglb Structured version   Visualization version   GIF version

Theorem pellfundglb 42880
Description: If a real is larger than the fundamental solution, there is a nontrivial solution less than it. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellfundglb ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴

Proof of Theorem pellfundglb
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pellfundval 42875 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
213ad2ant1 1133 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
3 simp3 1138 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (PellFund‘𝐷) < 𝐴)
42, 3eqbrtrrd 5134 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) < 𝐴)
5 pellfundre 42876 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
653ad2ant1 1133 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (PellFund‘𝐷) ∈ ℝ)
72, 6eqeltrrd 2830 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) ∈ ℝ)
8 simp2 1137 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → 𝐴 ∈ ℝ)
97, 8ltnled 11328 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) < 𝐴 ↔ ¬ 𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )))
104, 9mpbid 232 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ¬ 𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
11 ssrab2 4046 . . . . . 6 {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷)
12 pell14qrre 42852 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ)
1312ex 412 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ ℝ))
1413ssrdv 3955 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ)
15143ad2ant1 1133 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (Pell14QR‘𝐷) ⊆ ℝ)
1611, 15sstrid 3961 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ)
17 pell1qrss14 42863 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
18173ad2ant1 1133 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
19 pellqrex 42874 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎)
20193ad2ant1 1133 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎)
21 ssrexv 4019 . . . . . . 7 ((Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷) → (∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎 → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎))
2218, 20, 21sylc 65 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)
23 rabn0 4355 . . . . . 6 ({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ↔ ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)
2422, 23sylibr 234 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅)
25 infmrgelbi 42873 . . . . . 6 ((({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥) → 𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
2625ex 412 . . . . 5 (({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ 𝐴 ∈ ℝ) → (∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )))
2716, 24, 8, 26syl3anc 1373 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )))
2810, 27mtod 198 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ¬ ∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥)
29 rexnal 3083 . . 3 (∃𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ¬ 𝐴𝑥 ↔ ¬ ∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥)
3028, 29sylibr 234 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ¬ 𝐴𝑥)
31 breq2 5114 . . . . 5 (𝑎 = 𝑥 → (1 < 𝑎 ↔ 1 < 𝑥))
3231elrab 3662 . . . 4 (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥))
33 simprl 770 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝑥 ∈ (Pell14QR‘𝐷))
34 1red 11182 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 1 ∈ ℝ)
35 simpl1 1192 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝐷 ∈ (ℕ ∖ ◻NN))
36 pell14qrre 42852 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑥 ∈ (Pell14QR‘𝐷)) → 𝑥 ∈ ℝ)
3735, 33, 36syl2anc 584 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝑥 ∈ ℝ)
38 simprr 772 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 1 < 𝑥)
3934, 37, 38ltled 11329 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 1 ≤ 𝑥)
4033, 39jca 511 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝑥))
41 elpell1qr2 42867 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑥 ∈ (Pell1QR‘𝐷) ↔ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝑥)))
4235, 41syl 17 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → (𝑥 ∈ (Pell1QR‘𝐷) ↔ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝑥)))
4340, 42mpbird 257 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝑥 ∈ (Pell1QR‘𝐷))
4432, 43sylan2b 594 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ 𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}) → 𝑥 ∈ (Pell1QR‘𝐷))
4544adantrr 717 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ (Pell1QR‘𝐷))
46 simpl1 1192 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝐷 ∈ (ℕ ∖ ◻NN))
47 simprl 770 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎})
4811, 47sselid 3947 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ (Pell14QR‘𝐷))
49 simpr 484 . . . . . . . 8 ((𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥) → 1 < 𝑥)
5049a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ((𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥) → 1 < 𝑥))
5132, 50biimtrid 242 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → 1 < 𝑥))
5251imp 406 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ 𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}) → 1 < 𝑥)
5352adantrr 717 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 1 < 𝑥)
54 pellfundlb 42879 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥) → (PellFund‘𝐷) ≤ 𝑥)
5546, 48, 53, 54syl3anc 1373 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (PellFund‘𝐷) ≤ 𝑥)
56 simprr 772 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → ¬ 𝐴𝑥)
5715adantr 480 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (Pell14QR‘𝐷) ⊆ ℝ)
5857, 48sseldd 3950 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ ℝ)
59 simpl2 1193 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝐴 ∈ ℝ)
6058, 59ltnled 11328 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
6156, 60mpbird 257 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 < 𝐴)
6255, 61jca 511 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → ((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))
6330, 45, 62reximssdv 3152 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cdif 3914  wss 3917  c0 4299   class class class wbr 5110  cfv 6514  infcinf 9399  cr 11074  1c1 11076   < clt 11215  cle 11216  cn 12193  NNcsquarenn 42831  Pell1QRcpell1qr 42832  Pell14QRcpell14qr 42834  PellFundcpellfund 42835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ico 13319  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-numer 16712  df-denom 16713  df-squarenn 42836  df-pell1qr 42837  df-pell14qr 42838  df-pell1234qr 42839  df-pellfund 42840
This theorem is referenced by:  pellfundex  42881
  Copyright terms: Public domain W3C validator