Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundglb Structured version   Visualization version   GIF version

Theorem pellfundglb 42862
Description: If a real is larger than the fundamental solution, there is a nontrivial solution less than it. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellfundglb ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴

Proof of Theorem pellfundglb
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pellfundval 42857 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
213ad2ant1 1133 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
3 simp3 1138 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (PellFund‘𝐷) < 𝐴)
42, 3eqbrtrrd 5116 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) < 𝐴)
5 pellfundre 42858 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
653ad2ant1 1133 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (PellFund‘𝐷) ∈ ℝ)
72, 6eqeltrrd 2829 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) ∈ ℝ)
8 simp2 1137 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → 𝐴 ∈ ℝ)
97, 8ltnled 11263 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) < 𝐴 ↔ ¬ 𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )))
104, 9mpbid 232 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ¬ 𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
11 ssrab2 4031 . . . . . 6 {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷)
12 pell14qrre 42834 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ)
1312ex 412 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑎 ∈ (Pell14QR‘𝐷) → 𝑎 ∈ ℝ))
1413ssrdv 3941 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ)
15143ad2ant1 1133 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (Pell14QR‘𝐷) ⊆ ℝ)
1611, 15sstrid 3947 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ)
17 pell1qrss14 42845 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
18173ad2ant1 1133 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
19 pellqrex 42856 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎)
20193ad2ant1 1133 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎)
21 ssrexv 4005 . . . . . . 7 ((Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷) → (∃𝑎 ∈ (Pell1QR‘𝐷)1 < 𝑎 → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎))
2218, 20, 21sylc 65 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)
23 rabn0 4340 . . . . . 6 ({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ↔ ∃𝑎 ∈ (Pell14QR‘𝐷)1 < 𝑎)
2422, 23sylibr 234 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅)
25 infmrgelbi 42855 . . . . . 6 ((({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ 𝐴 ∈ ℝ) ∧ ∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥) → 𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
2625ex 412 . . . . 5 (({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ≠ ∅ ∧ 𝐴 ∈ ℝ) → (∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )))
2716, 24, 8, 26syl3anc 1373 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥𝐴 ≤ inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < )))
2810, 27mtod 198 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ¬ ∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥)
29 rexnal 3081 . . 3 (∃𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ¬ 𝐴𝑥 ↔ ¬ ∀𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝐴𝑥)
3028, 29sylibr 234 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ¬ 𝐴𝑥)
31 breq2 5096 . . . . 5 (𝑎 = 𝑥 → (1 < 𝑎 ↔ 1 < 𝑥))
3231elrab 3648 . . . 4 (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥))
33 simprl 770 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝑥 ∈ (Pell14QR‘𝐷))
34 1red 11116 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 1 ∈ ℝ)
35 simpl1 1192 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝐷 ∈ (ℕ ∖ ◻NN))
36 pell14qrre 42834 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑥 ∈ (Pell14QR‘𝐷)) → 𝑥 ∈ ℝ)
3735, 33, 36syl2anc 584 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝑥 ∈ ℝ)
38 simprr 772 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 1 < 𝑥)
3934, 37, 38ltled 11264 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 1 ≤ 𝑥)
4033, 39jca 511 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝑥))
41 elpell1qr2 42849 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑥 ∈ (Pell1QR‘𝐷) ↔ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝑥)))
4235, 41syl 17 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → (𝑥 ∈ (Pell1QR‘𝐷) ↔ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝑥)))
4340, 42mpbird 257 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥)) → 𝑥 ∈ (Pell1QR‘𝐷))
4432, 43sylan2b 594 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ 𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}) → 𝑥 ∈ (Pell1QR‘𝐷))
4544adantrr 717 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ (Pell1QR‘𝐷))
46 simpl1 1192 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝐷 ∈ (ℕ ∖ ◻NN))
47 simprl 770 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎})
4811, 47sselid 3933 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ (Pell14QR‘𝐷))
49 simpr 484 . . . . . . . 8 ((𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥) → 1 < 𝑥)
5049a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ((𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥) → 1 < 𝑥))
5132, 50biimtrid 242 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → 1 < 𝑥))
5251imp 406 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ 𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}) → 1 < 𝑥)
5352adantrr 717 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 1 < 𝑥)
54 pellfundlb 42861 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑥 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑥) → (PellFund‘𝐷) ≤ 𝑥)
5546, 48, 53, 54syl3anc 1373 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (PellFund‘𝐷) ≤ 𝑥)
56 simprr 772 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → ¬ 𝐴𝑥)
5715adantr 480 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (Pell14QR‘𝐷) ⊆ ℝ)
5857, 48sseldd 3936 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 ∈ ℝ)
59 simpl2 1193 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝐴 ∈ ℝ)
6058, 59ltnled 11263 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → (𝑥 < 𝐴 ↔ ¬ 𝐴𝑥))
6156, 60mpbird 257 . . 3 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → 𝑥 < 𝐴)
6255, 61jca 511 . 2 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) ∧ (𝑥 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ∧ ¬ 𝐴𝑥)) → ((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))
6330, 45, 62reximssdv 3147 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥𝑥 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  cdif 3900  wss 3903  c0 4284   class class class wbr 5092  cfv 6482  infcinf 9331  cr 11008  1c1 11010   < clt 11149  cle 11150  cn 12128  NNcsquarenn 42813  Pell1QRcpell1qr 42814  Pell14QRcpell14qr 42816  PellFundcpellfund 42817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-ico 13254  df-fz 13411  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647  df-squarenn 42818  df-pell1qr 42819  df-pell14qr 42820  df-pell1234qr 42821  df-pellfund 42822
This theorem is referenced by:  pellfundex  42863
  Copyright terms: Public domain W3C validator