MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpssslw Structured version   Visualization version   GIF version

Theorem pgpssslw 19228
Description: Every 𝑃-subgroup is contained in a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
pgpssslw.1 𝑋 = (Base‘𝐺)
pgpssslw.2 𝑆 = (𝐺s 𝐻)
pgpssslw.3 𝐹 = (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ↦ (♯‘𝑥))
Assertion
Ref Expression
pgpssslw ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (𝑃 pSyl 𝐺)𝐻𝑘)
Distinct variable groups:   𝑥,𝑘,𝑦,𝐺   𝑘,𝐻,𝑥,𝑦   𝑃,𝑘,𝑥,𝑦   𝑘,𝑋,𝑥   𝑘,𝐹   𝑆,𝑘,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem pgpssslw
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1136 . . . . . . . . . 10 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝑋 ∈ Fin)
2 elrabi 3619 . . . . . . . . . . 11 (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → 𝑥 ∈ (SubGrp‘𝐺))
3 pgpssslw.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
43subgss 18765 . . . . . . . . . . 11 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝑋)
52, 4syl 17 . . . . . . . . . 10 (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → 𝑥𝑋)
6 ssfi 8965 . . . . . . . . . 10 ((𝑋 ∈ Fin ∧ 𝑥𝑋) → 𝑥 ∈ Fin)
71, 5, 6syl2an 596 . . . . . . . . 9 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → 𝑥 ∈ Fin)
8 hashcl 14080 . . . . . . . . 9 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
97, 8syl 17 . . . . . . . 8 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (♯‘𝑥) ∈ ℕ0)
109nn0zd 12433 . . . . . . 7 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (♯‘𝑥) ∈ ℤ)
11 pgpssslw.3 . . . . . . 7 𝐹 = (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ↦ (♯‘𝑥))
1210, 11fmptd 6997 . . . . . 6 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝐹:{𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}⟶ℤ)
1312frnd 6617 . . . . 5 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ran 𝐹 ⊆ ℤ)
14 fvex 6796 . . . . . . . 8 (♯‘𝑥) ∈ V
1514, 11fnmpti 6585 . . . . . . 7 𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}
16 eqimss2 3979 . . . . . . . . . 10 (𝑦 = 𝐻𝐻𝑦)
1716biantrud 532 . . . . . . . . 9 (𝑦 = 𝐻 → (𝑃 pGrp (𝐺s 𝑦) ↔ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)))
18 oveq2 7292 . . . . . . . . . . 11 (𝑦 = 𝐻 → (𝐺s 𝑦) = (𝐺s 𝐻))
19 pgpssslw.2 . . . . . . . . . . 11 𝑆 = (𝐺s 𝐻)
2018, 19eqtr4di 2797 . . . . . . . . . 10 (𝑦 = 𝐻 → (𝐺s 𝑦) = 𝑆)
2120breq2d 5087 . . . . . . . . 9 (𝑦 = 𝐻 → (𝑃 pGrp (𝐺s 𝑦) ↔ 𝑃 pGrp 𝑆))
2217, 21bitr3d 280 . . . . . . . 8 (𝑦 = 𝐻 → ((𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦) ↔ 𝑃 pGrp 𝑆))
23 simp1 1135 . . . . . . . 8 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝐻 ∈ (SubGrp‘𝐺))
24 simp3 1137 . . . . . . . 8 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝑃 pGrp 𝑆)
2522, 23, 24elrabd 3627 . . . . . . 7 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝐻 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)})
26 fnfvelrn 6967 . . . . . . 7 ((𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ∧ 𝐻 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (𝐹𝐻) ∈ ran 𝐹)
2715, 25, 26sylancr 587 . . . . . 6 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → (𝐹𝐻) ∈ ran 𝐹)
2827ne0d 4270 . . . . 5 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ran 𝐹 ≠ ∅)
29 hashcl 14080 . . . . . . . 8 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
301, 29syl 17 . . . . . . 7 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → (♯‘𝑋) ∈ ℕ0)
3130nn0red 12303 . . . . . 6 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → (♯‘𝑋) ∈ ℝ)
32 fveq2 6783 . . . . . . . . . . 11 (𝑥 = 𝑚 → (♯‘𝑥) = (♯‘𝑚))
33 fvex 6796 . . . . . . . . . . 11 (♯‘𝑚) ∈ V
3432, 11, 33fvmpt 6884 . . . . . . . . . 10 (𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → (𝐹𝑚) = (♯‘𝑚))
3534adantl 482 . . . . . . . . 9 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (𝐹𝑚) = (♯‘𝑚))
36 oveq2 7292 . . . . . . . . . . . . 13 (𝑦 = 𝑚 → (𝐺s 𝑦) = (𝐺s 𝑚))
3736breq2d 5087 . . . . . . . . . . . 12 (𝑦 = 𝑚 → (𝑃 pGrp (𝐺s 𝑦) ↔ 𝑃 pGrp (𝐺s 𝑚)))
38 sseq2 3948 . . . . . . . . . . . 12 (𝑦 = 𝑚 → (𝐻𝑦𝐻𝑚))
3937, 38anbi12d 631 . . . . . . . . . . 11 (𝑦 = 𝑚 → ((𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦) ↔ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚)))
4039elrab 3625 . . . . . . . . . 10 (𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ↔ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚)))
411adantr 481 . . . . . . . . . . . 12 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → 𝑋 ∈ Fin)
423subgss 18765 . . . . . . . . . . . . 13 (𝑚 ∈ (SubGrp‘𝐺) → 𝑚𝑋)
4342ad2antrl 725 . . . . . . . . . . . 12 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → 𝑚𝑋)
44 ssdomg 8795 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (𝑚𝑋𝑚𝑋))
4541, 43, 44sylc 65 . . . . . . . . . . 11 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → 𝑚𝑋)
4641, 43ssfid 9051 . . . . . . . . . . . 12 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → 𝑚 ∈ Fin)
47 hashdom 14103 . . . . . . . . . . . 12 ((𝑚 ∈ Fin ∧ 𝑋 ∈ Fin) → ((♯‘𝑚) ≤ (♯‘𝑋) ↔ 𝑚𝑋))
4846, 41, 47syl2anc 584 . . . . . . . . . . 11 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → ((♯‘𝑚) ≤ (♯‘𝑋) ↔ 𝑚𝑋))
4945, 48mpbird 256 . . . . . . . . . 10 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → (♯‘𝑚) ≤ (♯‘𝑋))
5040, 49sylan2b 594 . . . . . . . . 9 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (♯‘𝑚) ≤ (♯‘𝑋))
5135, 50eqbrtrd 5097 . . . . . . . 8 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (𝐹𝑚) ≤ (♯‘𝑋))
5251ralrimiva 3104 . . . . . . 7 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∀𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑚) ≤ (♯‘𝑋))
53 breq1 5078 . . . . . . . . 9 (𝑤 = (𝐹𝑚) → (𝑤 ≤ (♯‘𝑋) ↔ (𝐹𝑚) ≤ (♯‘𝑋)))
5453ralrn 6973 . . . . . . . 8 (𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → (∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋) ↔ ∀𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑚) ≤ (♯‘𝑋)))
5515, 54ax-mp 5 . . . . . . 7 (∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋) ↔ ∀𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑚) ≤ (♯‘𝑋))
5652, 55sylibr 233 . . . . . 6 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋))
57 brralrspcev 5135 . . . . . 6 (((♯‘𝑋) ∈ ℝ ∧ ∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤𝑧)
5831, 56, 57syl2anc 584 . . . . 5 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤𝑧)
59 suprzcl 12409 . . . . 5 ((ran 𝐹 ⊆ ℤ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤𝑧) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
6013, 28, 58, 59syl3anc 1370 . . . 4 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
61 fvelrnb 6839 . . . . 5 (𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))
6215, 61ax-mp 5 . . . 4 (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑘) = sup(ran 𝐹, ℝ, < ))
6360, 62sylib 217 . . 3 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑘) = sup(ran 𝐹, ℝ, < ))
64 oveq2 7292 . . . . . 6 (𝑦 = 𝑘 → (𝐺s 𝑦) = (𝐺s 𝑘))
6564breq2d 5087 . . . . 5 (𝑦 = 𝑘 → (𝑃 pGrp (𝐺s 𝑦) ↔ 𝑃 pGrp (𝐺s 𝑘)))
66 sseq2 3948 . . . . 5 (𝑦 = 𝑘 → (𝐻𝑦𝐻𝑘))
6765, 66anbi12d 631 . . . 4 (𝑦 = 𝑘 → ((𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦) ↔ (𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘)))
6867rexrab 3634 . . 3 (∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑘) = sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ (SubGrp‘𝐺)((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))
6963, 68sylib 217 . 2 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (SubGrp‘𝐺)((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))
70 simpl3 1192 . . . 4 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑃 pGrp 𝑆)
71 pgpprm 19207 . . . 4 (𝑃 pGrp 𝑆𝑃 ∈ ℙ)
7270, 71syl 17 . . 3 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑃 ∈ ℙ)
73 simprl 768 . . 3 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑘 ∈ (SubGrp‘𝐺))
74 zssre 12335 . . . . . . . . . . . . 13 ℤ ⊆ ℝ
7513, 74sstrdi 3934 . . . . . . . . . . . 12 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ran 𝐹 ⊆ ℝ)
7675ad2antrr 723 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ran 𝐹 ⊆ ℝ)
7728ad2antrr 723 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ran 𝐹 ≠ ∅)
7858ad2antrr 723 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤𝑧)
79 simprl 768 . . . . . . . . . . . . . 14 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑚 ∈ (SubGrp‘𝐺))
80 simprrr 779 . . . . . . . . . . . . . . 15 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑃 pGrp (𝐺s 𝑚))
81 simprrl 778 . . . . . . . . . . . . . . . . . 18 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → (𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘))
8281adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘))
8382simprd 496 . . . . . . . . . . . . . . . 16 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝐻𝑘)
84 simprrl 778 . . . . . . . . . . . . . . . 16 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘𝑚)
8583, 84sstrd 3932 . . . . . . . . . . . . . . 15 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝐻𝑚)
8680, 85jca 512 . . . . . . . . . . . . . 14 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))
8739, 79, 86elrabd 3627 . . . . . . . . . . . . 13 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)})
8887, 34syl 17 . . . . . . . . . . . 12 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝐹𝑚) = (♯‘𝑚))
89 fnfvelrn 6967 . . . . . . . . . . . . 13 ((𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (𝐹𝑚) ∈ ran 𝐹)
9015, 87, 89sylancr 587 . . . . . . . . . . . 12 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝐹𝑚) ∈ ran 𝐹)
9188, 90eqeltrrd 2841 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (♯‘𝑚) ∈ ran 𝐹)
9276, 77, 78, 91suprubd 11946 . . . . . . . . . 10 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (♯‘𝑚) ≤ sup(ran 𝐹, ℝ, < ))
93 simprrr 779 . . . . . . . . . . . 12 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → (𝐹𝑘) = sup(ran 𝐹, ℝ, < ))
9493adantr 481 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝐹𝑘) = sup(ran 𝐹, ℝ, < ))
9573adantr 481 . . . . . . . . . . . . 13 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘 ∈ (SubGrp‘𝐺))
9667, 95, 82elrabd 3627 . . . . . . . . . . . 12 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)})
97 fveq2 6783 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (♯‘𝑥) = (♯‘𝑘))
98 fvex 6796 . . . . . . . . . . . . 13 (♯‘𝑘) ∈ V
9997, 11, 98fvmpt 6884 . . . . . . . . . . . 12 (𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → (𝐹𝑘) = (♯‘𝑘))
10096, 99syl 17 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝐹𝑘) = (♯‘𝑘))
10194, 100eqtr3d 2781 . . . . . . . . . 10 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → sup(ran 𝐹, ℝ, < ) = (♯‘𝑘))
10292, 101breqtrd 5101 . . . . . . . . 9 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (♯‘𝑚) ≤ (♯‘𝑘))
103 simpll2 1212 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑋 ∈ Fin)
10442ad2antrl 725 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑚𝑋)
105103, 104ssfid 9051 . . . . . . . . . 10 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑚 ∈ Fin)
106105, 84ssfid 9051 . . . . . . . . . 10 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘 ∈ Fin)
107 hashcl 14080 . . . . . . . . . . 11 (𝑚 ∈ Fin → (♯‘𝑚) ∈ ℕ0)
108 hashcl 14080 . . . . . . . . . . 11 (𝑘 ∈ Fin → (♯‘𝑘) ∈ ℕ0)
109 nn0re 12251 . . . . . . . . . . . 12 ((♯‘𝑚) ∈ ℕ0 → (♯‘𝑚) ∈ ℝ)
110 nn0re 12251 . . . . . . . . . . . 12 ((♯‘𝑘) ∈ ℕ0 → (♯‘𝑘) ∈ ℝ)
111 lenlt 11062 . . . . . . . . . . . 12 (((♯‘𝑚) ∈ ℝ ∧ (♯‘𝑘) ∈ ℝ) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬ (♯‘𝑘) < (♯‘𝑚)))
112109, 110, 111syl2an 596 . . . . . . . . . . 11 (((♯‘𝑚) ∈ ℕ0 ∧ (♯‘𝑘) ∈ ℕ0) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬ (♯‘𝑘) < (♯‘𝑚)))
113107, 108, 112syl2an 596 . . . . . . . . . 10 ((𝑚 ∈ Fin ∧ 𝑘 ∈ Fin) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬ (♯‘𝑘) < (♯‘𝑚)))
114105, 106, 113syl2anc 584 . . . . . . . . 9 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬ (♯‘𝑘) < (♯‘𝑚)))
115102, 114mpbid 231 . . . . . . . 8 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ¬ (♯‘𝑘) < (♯‘𝑚))
116 php3 9004 . . . . . . . . . . 11 ((𝑚 ∈ Fin ∧ 𝑘𝑚) → 𝑘𝑚)
117116ex 413 . . . . . . . . . 10 (𝑚 ∈ Fin → (𝑘𝑚𝑘𝑚))
118105, 117syl 17 . . . . . . . . 9 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑘𝑚𝑘𝑚))
119 hashsdom 14105 . . . . . . . . . 10 ((𝑘 ∈ Fin ∧ 𝑚 ∈ Fin) → ((♯‘𝑘) < (♯‘𝑚) ↔ 𝑘𝑚))
120106, 105, 119syl2anc 584 . . . . . . . . 9 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ((♯‘𝑘) < (♯‘𝑚) ↔ 𝑘𝑚))
121118, 120sylibrd 258 . . . . . . . 8 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑘𝑚 → (♯‘𝑘) < (♯‘𝑚)))
122115, 121mtod 197 . . . . . . 7 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ¬ 𝑘𝑚)
123 sspss 4035 . . . . . . . . 9 (𝑘𝑚 ↔ (𝑘𝑚𝑘 = 𝑚))
12484, 123sylib 217 . . . . . . . 8 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑘𝑚𝑘 = 𝑚))
125124ord 861 . . . . . . 7 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (¬ 𝑘𝑚𝑘 = 𝑚))
126122, 125mpd 15 . . . . . 6 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘 = 𝑚)
127126expr 457 . . . . 5 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → ((𝑘𝑚𝑃 pGrp (𝐺s 𝑚)) → 𝑘 = 𝑚))
12881simpld 495 . . . . . . 7 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑃 pGrp (𝐺s 𝑘))
129128adantr 481 . . . . . 6 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑘))
130 oveq2 7292 . . . . . . . 8 (𝑘 = 𝑚 → (𝐺s 𝑘) = (𝐺s 𝑚))
131130breq2d 5087 . . . . . . 7 (𝑘 = 𝑚 → (𝑃 pGrp (𝐺s 𝑘) ↔ 𝑃 pGrp (𝐺s 𝑚)))
132 eqimss 3978 . . . . . . . 8 (𝑘 = 𝑚𝑘𝑚)
133132biantrurd 533 . . . . . . 7 (𝑘 = 𝑚 → (𝑃 pGrp (𝐺s 𝑚) ↔ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚))))
134131, 133bitrd 278 . . . . . 6 (𝑘 = 𝑚 → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚))))
135129, 134syl5ibcom 244 . . . . 5 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → (𝑘 = 𝑚 → (𝑘𝑚𝑃 pGrp (𝐺s 𝑚))))
136127, 135impbid 211 . . . 4 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → ((𝑘𝑚𝑃 pGrp (𝐺s 𝑚)) ↔ 𝑘 = 𝑚))
137136ralrimiva 3104 . . 3 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → ∀𝑚 ∈ (SubGrp‘𝐺)((𝑘𝑚𝑃 pGrp (𝐺s 𝑚)) ↔ 𝑘 = 𝑚))
138 isslw 19222 . . 3 (𝑘 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝑘 ∈ (SubGrp‘𝐺) ∧ ∀𝑚 ∈ (SubGrp‘𝐺)((𝑘𝑚𝑃 pGrp (𝐺s 𝑚)) ↔ 𝑘 = 𝑚)))
13972, 73, 137, 138syl3anbrc 1342 . 2 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑘 ∈ (𝑃 pSyl 𝐺))
14081simprd 496 . 2 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝐻𝑘)
14169, 139, 140reximssdv 3206 1 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (𝑃 pSyl 𝐺)𝐻𝑘)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066  {crab 3069  wss 3888  wpss 3889  c0 4257   class class class wbr 5075  cmpt 5158  ran crn 5591   Fn wfn 6432  cfv 6437  (class class class)co 7284  cdom 8740  csdm 8741  Fincfn 8742  supcsup 9208  cr 10879   < clt 11018  cle 11019  0cn0 12242  cz 12328  chash 14053  cprime 16385  Basecbs 16921  s cress 16950  SubGrpcsubg 18758   pGrp cpgp 19143   pSyl cslw 19144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-oadd 8310  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-sup 9210  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-n0 12243  df-xnn0 12315  df-z 12329  df-uz 12592  df-fz 13249  df-hash 14054  df-subg 18761  df-pgp 19147  df-slw 19148
This theorem is referenced by:  slwn0  19229
  Copyright terms: Public domain W3C validator