MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpssslw Structured version   Visualization version   GIF version

Theorem pgpssslw 19647
Description: Every 𝑃-subgroup is contained in a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
pgpssslw.1 𝑋 = (Base‘𝐺)
pgpssslw.2 𝑆 = (𝐺s 𝐻)
pgpssslw.3 𝐹 = (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ↦ (♯‘𝑥))
Assertion
Ref Expression
pgpssslw ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (𝑃 pSyl 𝐺)𝐻𝑘)
Distinct variable groups:   𝑥,𝑘,𝑦,𝐺   𝑘,𝐻,𝑥,𝑦   𝑃,𝑘,𝑥,𝑦   𝑘,𝑋,𝑥   𝑘,𝐹   𝑆,𝑘,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem pgpssslw
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1136 . . . . . . . . . 10 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝑋 ∈ Fin)
2 elrabi 3690 . . . . . . . . . . 11 (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → 𝑥 ∈ (SubGrp‘𝐺))
3 pgpssslw.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
43subgss 19158 . . . . . . . . . . 11 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝑋)
52, 4syl 17 . . . . . . . . . 10 (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → 𝑥𝑋)
6 ssfi 9212 . . . . . . . . . 10 ((𝑋 ∈ Fin ∧ 𝑥𝑋) → 𝑥 ∈ Fin)
71, 5, 6syl2an 596 . . . . . . . . 9 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → 𝑥 ∈ Fin)
8 hashcl 14392 . . . . . . . . 9 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
97, 8syl 17 . . . . . . . 8 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (♯‘𝑥) ∈ ℕ0)
109nn0zd 12637 . . . . . . 7 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (♯‘𝑥) ∈ ℤ)
11 pgpssslw.3 . . . . . . 7 𝐹 = (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ↦ (♯‘𝑥))
1210, 11fmptd 7134 . . . . . 6 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝐹:{𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}⟶ℤ)
1312frnd 6745 . . . . 5 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ran 𝐹 ⊆ ℤ)
14 fvex 6920 . . . . . . . 8 (♯‘𝑥) ∈ V
1514, 11fnmpti 6712 . . . . . . 7 𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}
16 eqimss2 4055 . . . . . . . . . 10 (𝑦 = 𝐻𝐻𝑦)
1716biantrud 531 . . . . . . . . 9 (𝑦 = 𝐻 → (𝑃 pGrp (𝐺s 𝑦) ↔ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)))
18 oveq2 7439 . . . . . . . . . . 11 (𝑦 = 𝐻 → (𝐺s 𝑦) = (𝐺s 𝐻))
19 pgpssslw.2 . . . . . . . . . . 11 𝑆 = (𝐺s 𝐻)
2018, 19eqtr4di 2793 . . . . . . . . . 10 (𝑦 = 𝐻 → (𝐺s 𝑦) = 𝑆)
2120breq2d 5160 . . . . . . . . 9 (𝑦 = 𝐻 → (𝑃 pGrp (𝐺s 𝑦) ↔ 𝑃 pGrp 𝑆))
2217, 21bitr3d 281 . . . . . . . 8 (𝑦 = 𝐻 → ((𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦) ↔ 𝑃 pGrp 𝑆))
23 simp1 1135 . . . . . . . 8 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝐻 ∈ (SubGrp‘𝐺))
24 simp3 1137 . . . . . . . 8 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝑃 pGrp 𝑆)
2522, 23, 24elrabd 3697 . . . . . . 7 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝐻 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)})
26 fnfvelrn 7100 . . . . . . 7 ((𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ∧ 𝐻 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (𝐹𝐻) ∈ ran 𝐹)
2715, 25, 26sylancr 587 . . . . . 6 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → (𝐹𝐻) ∈ ran 𝐹)
2827ne0d 4348 . . . . 5 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ran 𝐹 ≠ ∅)
29 hashcl 14392 . . . . . . . 8 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
301, 29syl 17 . . . . . . 7 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → (♯‘𝑋) ∈ ℕ0)
3130nn0red 12586 . . . . . 6 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → (♯‘𝑋) ∈ ℝ)
32 fveq2 6907 . . . . . . . . . . 11 (𝑥 = 𝑚 → (♯‘𝑥) = (♯‘𝑚))
33 fvex 6920 . . . . . . . . . . 11 (♯‘𝑚) ∈ V
3432, 11, 33fvmpt 7016 . . . . . . . . . 10 (𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → (𝐹𝑚) = (♯‘𝑚))
3534adantl 481 . . . . . . . . 9 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (𝐹𝑚) = (♯‘𝑚))
36 oveq2 7439 . . . . . . . . . . . . 13 (𝑦 = 𝑚 → (𝐺s 𝑦) = (𝐺s 𝑚))
3736breq2d 5160 . . . . . . . . . . . 12 (𝑦 = 𝑚 → (𝑃 pGrp (𝐺s 𝑦) ↔ 𝑃 pGrp (𝐺s 𝑚)))
38 sseq2 4022 . . . . . . . . . . . 12 (𝑦 = 𝑚 → (𝐻𝑦𝐻𝑚))
3937, 38anbi12d 632 . . . . . . . . . . 11 (𝑦 = 𝑚 → ((𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦) ↔ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚)))
4039elrab 3695 . . . . . . . . . 10 (𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ↔ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚)))
411adantr 480 . . . . . . . . . . . 12 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → 𝑋 ∈ Fin)
423subgss 19158 . . . . . . . . . . . . 13 (𝑚 ∈ (SubGrp‘𝐺) → 𝑚𝑋)
4342ad2antrl 728 . . . . . . . . . . . 12 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → 𝑚𝑋)
44 ssdomg 9039 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (𝑚𝑋𝑚𝑋))
4541, 43, 44sylc 65 . . . . . . . . . . 11 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → 𝑚𝑋)
4641, 43ssfid 9299 . . . . . . . . . . . 12 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → 𝑚 ∈ Fin)
47 hashdom 14415 . . . . . . . . . . . 12 ((𝑚 ∈ Fin ∧ 𝑋 ∈ Fin) → ((♯‘𝑚) ≤ (♯‘𝑋) ↔ 𝑚𝑋))
4846, 41, 47syl2anc 584 . . . . . . . . . . 11 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → ((♯‘𝑚) ≤ (♯‘𝑋) ↔ 𝑚𝑋))
4945, 48mpbird 257 . . . . . . . . . 10 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → (♯‘𝑚) ≤ (♯‘𝑋))
5040, 49sylan2b 594 . . . . . . . . 9 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (♯‘𝑚) ≤ (♯‘𝑋))
5135, 50eqbrtrd 5170 . . . . . . . 8 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (𝐹𝑚) ≤ (♯‘𝑋))
5251ralrimiva 3144 . . . . . . 7 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∀𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑚) ≤ (♯‘𝑋))
53 breq1 5151 . . . . . . . . 9 (𝑤 = (𝐹𝑚) → (𝑤 ≤ (♯‘𝑋) ↔ (𝐹𝑚) ≤ (♯‘𝑋)))
5453ralrn 7108 . . . . . . . 8 (𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → (∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋) ↔ ∀𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑚) ≤ (♯‘𝑋)))
5515, 54ax-mp 5 . . . . . . 7 (∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋) ↔ ∀𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑚) ≤ (♯‘𝑋))
5652, 55sylibr 234 . . . . . 6 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋))
57 brralrspcev 5208 . . . . . 6 (((♯‘𝑋) ∈ ℝ ∧ ∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤𝑧)
5831, 56, 57syl2anc 584 . . . . 5 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤𝑧)
59 suprzcl 12696 . . . . 5 ((ran 𝐹 ⊆ ℤ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤𝑧) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
6013, 28, 58, 59syl3anc 1370 . . . 4 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
61 fvelrnb 6969 . . . . 5 (𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))
6215, 61ax-mp 5 . . . 4 (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑘) = sup(ran 𝐹, ℝ, < ))
6360, 62sylib 218 . . 3 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑘) = sup(ran 𝐹, ℝ, < ))
64 oveq2 7439 . . . . . 6 (𝑦 = 𝑘 → (𝐺s 𝑦) = (𝐺s 𝑘))
6564breq2d 5160 . . . . 5 (𝑦 = 𝑘 → (𝑃 pGrp (𝐺s 𝑦) ↔ 𝑃 pGrp (𝐺s 𝑘)))
66 sseq2 4022 . . . . 5 (𝑦 = 𝑘 → (𝐻𝑦𝐻𝑘))
6765, 66anbi12d 632 . . . 4 (𝑦 = 𝑘 → ((𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦) ↔ (𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘)))
6867rexrab 3705 . . 3 (∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑘) = sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ (SubGrp‘𝐺)((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))
6963, 68sylib 218 . 2 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (SubGrp‘𝐺)((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))
70 simpl3 1192 . . . 4 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑃 pGrp 𝑆)
71 pgpprm 19626 . . . 4 (𝑃 pGrp 𝑆𝑃 ∈ ℙ)
7270, 71syl 17 . . 3 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑃 ∈ ℙ)
73 simprl 771 . . 3 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑘 ∈ (SubGrp‘𝐺))
74 zssre 12618 . . . . . . . . . . . . 13 ℤ ⊆ ℝ
7513, 74sstrdi 4008 . . . . . . . . . . . 12 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ran 𝐹 ⊆ ℝ)
7675ad2antrr 726 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ran 𝐹 ⊆ ℝ)
7728ad2antrr 726 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ran 𝐹 ≠ ∅)
7858ad2antrr 726 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤𝑧)
79 simprl 771 . . . . . . . . . . . . . 14 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑚 ∈ (SubGrp‘𝐺))
80 simprrr 782 . . . . . . . . . . . . . . 15 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑃 pGrp (𝐺s 𝑚))
81 simprrl 781 . . . . . . . . . . . . . . . . . 18 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → (𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘))
8281adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘))
8382simprd 495 . . . . . . . . . . . . . . . 16 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝐻𝑘)
84 simprrl 781 . . . . . . . . . . . . . . . 16 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘𝑚)
8583, 84sstrd 4006 . . . . . . . . . . . . . . 15 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝐻𝑚)
8680, 85jca 511 . . . . . . . . . . . . . 14 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))
8739, 79, 86elrabd 3697 . . . . . . . . . . . . 13 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)})
8887, 34syl 17 . . . . . . . . . . . 12 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝐹𝑚) = (♯‘𝑚))
89 fnfvelrn 7100 . . . . . . . . . . . . 13 ((𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (𝐹𝑚) ∈ ran 𝐹)
9015, 87, 89sylancr 587 . . . . . . . . . . . 12 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝐹𝑚) ∈ ran 𝐹)
9188, 90eqeltrrd 2840 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (♯‘𝑚) ∈ ran 𝐹)
9276, 77, 78, 91suprubd 12228 . . . . . . . . . 10 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (♯‘𝑚) ≤ sup(ran 𝐹, ℝ, < ))
93 simprrr 782 . . . . . . . . . . . 12 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → (𝐹𝑘) = sup(ran 𝐹, ℝ, < ))
9493adantr 480 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝐹𝑘) = sup(ran 𝐹, ℝ, < ))
9573adantr 480 . . . . . . . . . . . . 13 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘 ∈ (SubGrp‘𝐺))
9667, 95, 82elrabd 3697 . . . . . . . . . . . 12 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)})
97 fveq2 6907 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (♯‘𝑥) = (♯‘𝑘))
98 fvex 6920 . . . . . . . . . . . . 13 (♯‘𝑘) ∈ V
9997, 11, 98fvmpt 7016 . . . . . . . . . . . 12 (𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → (𝐹𝑘) = (♯‘𝑘))
10096, 99syl 17 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝐹𝑘) = (♯‘𝑘))
10194, 100eqtr3d 2777 . . . . . . . . . 10 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → sup(ran 𝐹, ℝ, < ) = (♯‘𝑘))
10292, 101breqtrd 5174 . . . . . . . . 9 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (♯‘𝑚) ≤ (♯‘𝑘))
103 simpll2 1212 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑋 ∈ Fin)
10442ad2antrl 728 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑚𝑋)
105103, 104ssfid 9299 . . . . . . . . . 10 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑚 ∈ Fin)
106105, 84ssfid 9299 . . . . . . . . . 10 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘 ∈ Fin)
107 hashcl 14392 . . . . . . . . . . 11 (𝑚 ∈ Fin → (♯‘𝑚) ∈ ℕ0)
108 hashcl 14392 . . . . . . . . . . 11 (𝑘 ∈ Fin → (♯‘𝑘) ∈ ℕ0)
109 nn0re 12533 . . . . . . . . . . . 12 ((♯‘𝑚) ∈ ℕ0 → (♯‘𝑚) ∈ ℝ)
110 nn0re 12533 . . . . . . . . . . . 12 ((♯‘𝑘) ∈ ℕ0 → (♯‘𝑘) ∈ ℝ)
111 lenlt 11337 . . . . . . . . . . . 12 (((♯‘𝑚) ∈ ℝ ∧ (♯‘𝑘) ∈ ℝ) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬ (♯‘𝑘) < (♯‘𝑚)))
112109, 110, 111syl2an 596 . . . . . . . . . . 11 (((♯‘𝑚) ∈ ℕ0 ∧ (♯‘𝑘) ∈ ℕ0) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬ (♯‘𝑘) < (♯‘𝑚)))
113107, 108, 112syl2an 596 . . . . . . . . . 10 ((𝑚 ∈ Fin ∧ 𝑘 ∈ Fin) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬ (♯‘𝑘) < (♯‘𝑚)))
114105, 106, 113syl2anc 584 . . . . . . . . 9 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬ (♯‘𝑘) < (♯‘𝑚)))
115102, 114mpbid 232 . . . . . . . 8 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ¬ (♯‘𝑘) < (♯‘𝑚))
116 php3 9247 . . . . . . . . . . 11 ((𝑚 ∈ Fin ∧ 𝑘𝑚) → 𝑘𝑚)
117116ex 412 . . . . . . . . . 10 (𝑚 ∈ Fin → (𝑘𝑚𝑘𝑚))
118105, 117syl 17 . . . . . . . . 9 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑘𝑚𝑘𝑚))
119 hashsdom 14417 . . . . . . . . . 10 ((𝑘 ∈ Fin ∧ 𝑚 ∈ Fin) → ((♯‘𝑘) < (♯‘𝑚) ↔ 𝑘𝑚))
120106, 105, 119syl2anc 584 . . . . . . . . 9 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ((♯‘𝑘) < (♯‘𝑚) ↔ 𝑘𝑚))
121118, 120sylibrd 259 . . . . . . . 8 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑘𝑚 → (♯‘𝑘) < (♯‘𝑚)))
122115, 121mtod 198 . . . . . . 7 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ¬ 𝑘𝑚)
123 sspss 4112 . . . . . . . . 9 (𝑘𝑚 ↔ (𝑘𝑚𝑘 = 𝑚))
12484, 123sylib 218 . . . . . . . 8 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑘𝑚𝑘 = 𝑚))
125124ord 864 . . . . . . 7 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (¬ 𝑘𝑚𝑘 = 𝑚))
126122, 125mpd 15 . . . . . 6 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘 = 𝑚)
127126expr 456 . . . . 5 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → ((𝑘𝑚𝑃 pGrp (𝐺s 𝑚)) → 𝑘 = 𝑚))
12881simpld 494 . . . . . . 7 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑃 pGrp (𝐺s 𝑘))
129128adantr 480 . . . . . 6 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑘))
130 oveq2 7439 . . . . . . . 8 (𝑘 = 𝑚 → (𝐺s 𝑘) = (𝐺s 𝑚))
131130breq2d 5160 . . . . . . 7 (𝑘 = 𝑚 → (𝑃 pGrp (𝐺s 𝑘) ↔ 𝑃 pGrp (𝐺s 𝑚)))
132 eqimss 4054 . . . . . . . 8 (𝑘 = 𝑚𝑘𝑚)
133132biantrurd 532 . . . . . . 7 (𝑘 = 𝑚 → (𝑃 pGrp (𝐺s 𝑚) ↔ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚))))
134131, 133bitrd 279 . . . . . 6 (𝑘 = 𝑚 → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚))))
135129, 134syl5ibcom 245 . . . . 5 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → (𝑘 = 𝑚 → (𝑘𝑚𝑃 pGrp (𝐺s 𝑚))))
136127, 135impbid 212 . . . 4 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → ((𝑘𝑚𝑃 pGrp (𝐺s 𝑚)) ↔ 𝑘 = 𝑚))
137136ralrimiva 3144 . . 3 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → ∀𝑚 ∈ (SubGrp‘𝐺)((𝑘𝑚𝑃 pGrp (𝐺s 𝑚)) ↔ 𝑘 = 𝑚))
138 isslw 19641 . . 3 (𝑘 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝑘 ∈ (SubGrp‘𝐺) ∧ ∀𝑚 ∈ (SubGrp‘𝐺)((𝑘𝑚𝑃 pGrp (𝐺s 𝑚)) ↔ 𝑘 = 𝑚)))
13972, 73, 137, 138syl3anbrc 1342 . 2 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑘 ∈ (𝑃 pSyl 𝐺))
14081simprd 495 . 2 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝐻𝑘)
14169, 139, 140reximssdv 3171 1 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (𝑃 pSyl 𝐺)𝐻𝑘)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  wss 3963  wpss 3964  c0 4339   class class class wbr 5148  cmpt 5231  ran crn 5690   Fn wfn 6558  cfv 6563  (class class class)co 7431  cdom 8982  csdm 8983  Fincfn 8984  supcsup 9478  cr 11152   < clt 11293  cle 11294  0cn0 12524  cz 12611  chash 14366  cprime 16705  Basecbs 17245  s cress 17274  SubGrpcsubg 19151   pGrp cpgp 19559   pSyl cslw 19560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-subg 19154  df-pgp 19563  df-slw 19564
This theorem is referenced by:  slwn0  19648
  Copyright terms: Public domain W3C validator