Step | Hyp | Ref
| Expression |
1 | | simp2 1136 |
. . . . . . . . . 10
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝑋 ∈ Fin) |
2 | | elrabi 3619 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} → 𝑥 ∈ (SubGrp‘𝐺)) |
3 | | pgpssslw.1 |
. . . . . . . . . . . 12
⊢ 𝑋 = (Base‘𝐺) |
4 | 3 | subgss 18765 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (SubGrp‘𝐺) → 𝑥 ⊆ 𝑋) |
5 | 2, 4 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} → 𝑥 ⊆ 𝑋) |
6 | | ssfi 8965 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ Fin ∧ 𝑥 ⊆ 𝑋) → 𝑥 ∈ Fin) |
7 | 1, 5, 6 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)}) → 𝑥 ∈ Fin) |
8 | | hashcl 14080 |
. . . . . . . . 9
⊢ (𝑥 ∈ Fin →
(♯‘𝑥) ∈
ℕ0) |
9 | 7, 8 | syl 17 |
. . . . . . . 8
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)}) → (♯‘𝑥) ∈
ℕ0) |
10 | 9 | nn0zd 12433 |
. . . . . . 7
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)}) → (♯‘𝑥) ∈ ℤ) |
11 | | pgpssslw.3 |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} ↦ (♯‘𝑥)) |
12 | 10, 11 | fmptd 6997 |
. . . . . 6
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝐹:{𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)}⟶ℤ) |
13 | 12 | frnd 6617 |
. . . . 5
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ran 𝐹 ⊆ ℤ) |
14 | | fvex 6796 |
. . . . . . . 8
⊢
(♯‘𝑥)
∈ V |
15 | 14, 11 | fnmpti 6585 |
. . . . . . 7
⊢ 𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} |
16 | | eqimss2 3979 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐻 → 𝐻 ⊆ 𝑦) |
17 | 16 | biantrud 532 |
. . . . . . . . 9
⊢ (𝑦 = 𝐻 → (𝑃 pGrp (𝐺 ↾s 𝑦) ↔ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦))) |
18 | | oveq2 7292 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐻 → (𝐺 ↾s 𝑦) = (𝐺 ↾s 𝐻)) |
19 | | pgpssslw.2 |
. . . . . . . . . . 11
⊢ 𝑆 = (𝐺 ↾s 𝐻) |
20 | 18, 19 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐻 → (𝐺 ↾s 𝑦) = 𝑆) |
21 | 20 | breq2d 5087 |
. . . . . . . . 9
⊢ (𝑦 = 𝐻 → (𝑃 pGrp (𝐺 ↾s 𝑦) ↔ 𝑃 pGrp 𝑆)) |
22 | 17, 21 | bitr3d 280 |
. . . . . . . 8
⊢ (𝑦 = 𝐻 → ((𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦) ↔ 𝑃 pGrp 𝑆)) |
23 | | simp1 1135 |
. . . . . . . 8
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝐻 ∈ (SubGrp‘𝐺)) |
24 | | simp3 1137 |
. . . . . . . 8
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝑃 pGrp 𝑆) |
25 | 22, 23, 24 | elrabd 3627 |
. . . . . . 7
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝐻 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)}) |
26 | | fnfvelrn 6967 |
. . . . . . 7
⊢ ((𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} ∧ 𝐻 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)}) → (𝐹‘𝐻) ∈ ran 𝐹) |
27 | 15, 25, 26 | sylancr 587 |
. . . . . 6
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → (𝐹‘𝐻) ∈ ran 𝐹) |
28 | 27 | ne0d 4270 |
. . . . 5
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ran 𝐹 ≠ ∅) |
29 | | hashcl 14080 |
. . . . . . . 8
⊢ (𝑋 ∈ Fin →
(♯‘𝑋) ∈
ℕ0) |
30 | 1, 29 | syl 17 |
. . . . . . 7
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → (♯‘𝑋) ∈
ℕ0) |
31 | 30 | nn0red 12303 |
. . . . . 6
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → (♯‘𝑋) ∈ ℝ) |
32 | | fveq2 6783 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑚 → (♯‘𝑥) = (♯‘𝑚)) |
33 | | fvex 6796 |
. . . . . . . . . . 11
⊢
(♯‘𝑚)
∈ V |
34 | 32, 11, 33 | fvmpt 6884 |
. . . . . . . . . 10
⊢ (𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} → (𝐹‘𝑚) = (♯‘𝑚)) |
35 | 34 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)}) → (𝐹‘𝑚) = (♯‘𝑚)) |
36 | | oveq2 7292 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑚 → (𝐺 ↾s 𝑦) = (𝐺 ↾s 𝑚)) |
37 | 36 | breq2d 5087 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑚 → (𝑃 pGrp (𝐺 ↾s 𝑦) ↔ 𝑃 pGrp (𝐺 ↾s 𝑚))) |
38 | | sseq2 3948 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑚 → (𝐻 ⊆ 𝑦 ↔ 𝐻 ⊆ 𝑚)) |
39 | 37, 38 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑚 → ((𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦) ↔ (𝑃 pGrp (𝐺 ↾s 𝑚) ∧ 𝐻 ⊆ 𝑚))) |
40 | 39 | elrab 3625 |
. . . . . . . . . 10
⊢ (𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} ↔ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺 ↾s 𝑚) ∧ 𝐻 ⊆ 𝑚))) |
41 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺 ↾s 𝑚) ∧ 𝐻 ⊆ 𝑚))) → 𝑋 ∈ Fin) |
42 | 3 | subgss 18765 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (SubGrp‘𝐺) → 𝑚 ⊆ 𝑋) |
43 | 42 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺 ↾s 𝑚) ∧ 𝐻 ⊆ 𝑚))) → 𝑚 ⊆ 𝑋) |
44 | | ssdomg 8795 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ Fin → (𝑚 ⊆ 𝑋 → 𝑚 ≼ 𝑋)) |
45 | 41, 43, 44 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺 ↾s 𝑚) ∧ 𝐻 ⊆ 𝑚))) → 𝑚 ≼ 𝑋) |
46 | 41, 43 | ssfid 9051 |
. . . . . . . . . . . 12
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺 ↾s 𝑚) ∧ 𝐻 ⊆ 𝑚))) → 𝑚 ∈ Fin) |
47 | | hashdom 14103 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ Fin ∧ 𝑋 ∈ Fin) →
((♯‘𝑚) ≤
(♯‘𝑋) ↔
𝑚 ≼ 𝑋)) |
48 | 46, 41, 47 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺 ↾s 𝑚) ∧ 𝐻 ⊆ 𝑚))) → ((♯‘𝑚) ≤ (♯‘𝑋) ↔ 𝑚 ≼ 𝑋)) |
49 | 45, 48 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺 ↾s 𝑚) ∧ 𝐻 ⊆ 𝑚))) → (♯‘𝑚) ≤ (♯‘𝑋)) |
50 | 40, 49 | sylan2b 594 |
. . . . . . . . 9
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)}) → (♯‘𝑚) ≤ (♯‘𝑋)) |
51 | 35, 50 | eqbrtrd 5097 |
. . . . . . . 8
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)}) → (𝐹‘𝑚) ≤ (♯‘𝑋)) |
52 | 51 | ralrimiva 3104 |
. . . . . . 7
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∀𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} (𝐹‘𝑚) ≤ (♯‘𝑋)) |
53 | | breq1 5078 |
. . . . . . . . 9
⊢ (𝑤 = (𝐹‘𝑚) → (𝑤 ≤ (♯‘𝑋) ↔ (𝐹‘𝑚) ≤ (♯‘𝑋))) |
54 | 53 | ralrn 6973 |
. . . . . . . 8
⊢ (𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} → (∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋) ↔ ∀𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} (𝐹‘𝑚) ≤ (♯‘𝑋))) |
55 | 15, 54 | ax-mp 5 |
. . . . . . 7
⊢
(∀𝑤 ∈
ran 𝐹 𝑤 ≤ (♯‘𝑋) ↔ ∀𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} (𝐹‘𝑚) ≤ (♯‘𝑋)) |
56 | 52, 55 | sylibr 233 |
. . . . . 6
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋)) |
57 | | brralrspcev 5135 |
. . . . . 6
⊢
(((♯‘𝑋)
∈ ℝ ∧ ∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤 ≤ 𝑧) |
58 | 31, 56, 57 | syl2anc 584 |
. . . . 5
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤 ≤ 𝑧) |
59 | | suprzcl 12409 |
. . . . 5
⊢ ((ran
𝐹 ⊆ ℤ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑧 ∈ ℝ
∀𝑤 ∈ ran 𝐹 𝑤 ≤ 𝑧) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
60 | 13, 28, 58, 59 | syl3anc 1370 |
. . . 4
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
61 | | fvelrnb 6839 |
. . . . 5
⊢ (𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < ))) |
62 | 15, 61 | ax-mp 5 |
. . . 4
⊢ (sup(ran
𝐹, ℝ, < ) ∈
ran 𝐹 ↔ ∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )) |
63 | 60, 62 | sylib 217 |
. . 3
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )) |
64 | | oveq2 7292 |
. . . . . 6
⊢ (𝑦 = 𝑘 → (𝐺 ↾s 𝑦) = (𝐺 ↾s 𝑘)) |
65 | 64 | breq2d 5087 |
. . . . 5
⊢ (𝑦 = 𝑘 → (𝑃 pGrp (𝐺 ↾s 𝑦) ↔ 𝑃 pGrp (𝐺 ↾s 𝑘))) |
66 | | sseq2 3948 |
. . . . 5
⊢ (𝑦 = 𝑘 → (𝐻 ⊆ 𝑦 ↔ 𝐻 ⊆ 𝑘)) |
67 | 65, 66 | anbi12d 631 |
. . . 4
⊢ (𝑦 = 𝑘 → ((𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦) ↔ (𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘))) |
68 | 67 | rexrab 3634 |
. . 3
⊢
(∃𝑘 ∈
{𝑦 ∈
(SubGrp‘𝐺) ∣
(𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ (SubGrp‘𝐺)((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < ))) |
69 | 63, 68 | sylib 217 |
. 2
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (SubGrp‘𝐺)((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < ))) |
70 | | simpl3 1192 |
. . . 4
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑃 pGrp 𝑆) |
71 | | pgpprm 19207 |
. . . 4
⊢ (𝑃 pGrp 𝑆 → 𝑃 ∈ ℙ) |
72 | 70, 71 | syl 17 |
. . 3
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑃 ∈
ℙ) |
73 | | simprl 768 |
. . 3
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑘 ∈ (SubGrp‘𝐺)) |
74 | | zssre 12335 |
. . . . . . . . . . . . 13
⊢ ℤ
⊆ ℝ |
75 | 13, 74 | sstrdi 3934 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ran 𝐹 ⊆ ℝ) |
76 | 75 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → ran 𝐹 ⊆ ℝ) |
77 | 28 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → ran 𝐹 ≠ ∅) |
78 | 58 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤 ≤ 𝑧) |
79 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝑚 ∈ (SubGrp‘𝐺)) |
80 | | simprrr 779 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝑃 pGrp (𝐺 ↾s 𝑚)) |
81 | | simprrl 778 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) → (𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘)) |
82 | 81 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘)) |
83 | 82 | simprd 496 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝐻 ⊆ 𝑘) |
84 | | simprrl 778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝑘 ⊆ 𝑚) |
85 | 83, 84 | sstrd 3932 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝐻 ⊆ 𝑚) |
86 | 80, 85 | jca 512 |
. . . . . . . . . . . . . 14
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (𝑃 pGrp (𝐺 ↾s 𝑚) ∧ 𝐻 ⊆ 𝑚)) |
87 | 39, 79, 86 | elrabd 3627 |
. . . . . . . . . . . . 13
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)}) |
88 | 87, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (𝐹‘𝑚) = (♯‘𝑚)) |
89 | | fnfvelrn 6967 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)}) → (𝐹‘𝑚) ∈ ran 𝐹) |
90 | 15, 87, 89 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (𝐹‘𝑚) ∈ ran 𝐹) |
91 | 88, 90 | eqeltrrd 2841 |
. . . . . . . . . . 11
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (♯‘𝑚) ∈ ran 𝐹) |
92 | 76, 77, 78, 91 | suprubd 11946 |
. . . . . . . . . 10
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (♯‘𝑚) ≤ sup(ran 𝐹, ℝ, < )) |
93 | | simprrr 779 |
. . . . . . . . . . . 12
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) → (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )) |
94 | 93 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )) |
95 | 73 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝑘 ∈ (SubGrp‘𝐺)) |
96 | 67, 95, 82 | elrabd 3627 |
. . . . . . . . . . . 12
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)}) |
97 | | fveq2 6783 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑘 → (♯‘𝑥) = (♯‘𝑘)) |
98 | | fvex 6796 |
. . . . . . . . . . . . 13
⊢
(♯‘𝑘)
∈ V |
99 | 97, 11, 98 | fvmpt 6884 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺 ↾s 𝑦) ∧ 𝐻 ⊆ 𝑦)} → (𝐹‘𝑘) = (♯‘𝑘)) |
100 | 96, 99 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (𝐹‘𝑘) = (♯‘𝑘)) |
101 | 94, 100 | eqtr3d 2781 |
. . . . . . . . . 10
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → sup(ran 𝐹, ℝ, < ) = (♯‘𝑘)) |
102 | 92, 101 | breqtrd 5101 |
. . . . . . . . 9
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (♯‘𝑚) ≤ (♯‘𝑘)) |
103 | | simpll2 1212 |
. . . . . . . . . . 11
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝑋 ∈ Fin) |
104 | 42 | ad2antrl 725 |
. . . . . . . . . . 11
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝑚 ⊆ 𝑋) |
105 | 103, 104 | ssfid 9051 |
. . . . . . . . . 10
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝑚 ∈ Fin) |
106 | 105, 84 | ssfid 9051 |
. . . . . . . . . 10
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝑘 ∈ Fin) |
107 | | hashcl 14080 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ Fin →
(♯‘𝑚) ∈
ℕ0) |
108 | | hashcl 14080 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ Fin →
(♯‘𝑘) ∈
ℕ0) |
109 | | nn0re 12251 |
. . . . . . . . . . . 12
⊢
((♯‘𝑚)
∈ ℕ0 → (♯‘𝑚) ∈ ℝ) |
110 | | nn0re 12251 |
. . . . . . . . . . . 12
⊢
((♯‘𝑘)
∈ ℕ0 → (♯‘𝑘) ∈ ℝ) |
111 | | lenlt 11062 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑚)
∈ ℝ ∧ (♯‘𝑘) ∈ ℝ) →
((♯‘𝑚) ≤
(♯‘𝑘) ↔
¬ (♯‘𝑘)
< (♯‘𝑚))) |
112 | 109, 110,
111 | syl2an 596 |
. . . . . . . . . . 11
⊢
(((♯‘𝑚)
∈ ℕ0 ∧ (♯‘𝑘) ∈ ℕ0) →
((♯‘𝑚) ≤
(♯‘𝑘) ↔
¬ (♯‘𝑘)
< (♯‘𝑚))) |
113 | 107, 108,
112 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ Fin ∧ 𝑘 ∈ Fin) →
((♯‘𝑚) ≤
(♯‘𝑘) ↔
¬ (♯‘𝑘)
< (♯‘𝑚))) |
114 | 105, 106,
113 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬
(♯‘𝑘) <
(♯‘𝑚))) |
115 | 102, 114 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → ¬ (♯‘𝑘) < (♯‘𝑚)) |
116 | | php3 9004 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ Fin ∧ 𝑘 ⊊ 𝑚) → 𝑘 ≺ 𝑚) |
117 | 116 | ex 413 |
. . . . . . . . . 10
⊢ (𝑚 ∈ Fin → (𝑘 ⊊ 𝑚 → 𝑘 ≺ 𝑚)) |
118 | 105, 117 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (𝑘 ⊊ 𝑚 → 𝑘 ≺ 𝑚)) |
119 | | hashsdom 14105 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ Fin ∧ 𝑚 ∈ Fin) →
((♯‘𝑘) <
(♯‘𝑚) ↔
𝑘 ≺ 𝑚)) |
120 | 106, 105,
119 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → ((♯‘𝑘) < (♯‘𝑚) ↔ 𝑘 ≺ 𝑚)) |
121 | 118, 120 | sylibrd 258 |
. . . . . . . 8
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (𝑘 ⊊ 𝑚 → (♯‘𝑘) < (♯‘𝑚))) |
122 | 115, 121 | mtod 197 |
. . . . . . 7
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → ¬ 𝑘 ⊊ 𝑚) |
123 | | sspss 4035 |
. . . . . . . . 9
⊢ (𝑘 ⊆ 𝑚 ↔ (𝑘 ⊊ 𝑚 ∨ 𝑘 = 𝑚)) |
124 | 84, 123 | sylib 217 |
. . . . . . . 8
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (𝑘 ⊊ 𝑚 ∨ 𝑘 = 𝑚)) |
125 | 124 | ord 861 |
. . . . . . 7
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → (¬ 𝑘 ⊊ 𝑚 → 𝑘 = 𝑚)) |
126 | 122, 125 | mpd 15 |
. . . . . 6
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) → 𝑘 = 𝑚) |
127 | 126 | expr 457 |
. . . . 5
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → ((𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)) → 𝑘 = 𝑚)) |
128 | 81 | simpld 495 |
. . . . . . 7
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑃 pGrp (𝐺 ↾s 𝑘)) |
129 | 128 | adantr 481 |
. . . . . 6
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s 𝑘)) |
130 | | oveq2 7292 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (𝐺 ↾s 𝑘) = (𝐺 ↾s 𝑚)) |
131 | 130 | breq2d 5087 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → (𝑃 pGrp (𝐺 ↾s 𝑘) ↔ 𝑃 pGrp (𝐺 ↾s 𝑚))) |
132 | | eqimss 3978 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → 𝑘 ⊆ 𝑚) |
133 | 132 | biantrurd 533 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → (𝑃 pGrp (𝐺 ↾s 𝑚) ↔ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) |
134 | 131, 133 | bitrd 278 |
. . . . . 6
⊢ (𝑘 = 𝑚 → (𝑃 pGrp (𝐺 ↾s 𝑘) ↔ (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) |
135 | 129, 134 | syl5ibcom 244 |
. . . . 5
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → (𝑘 = 𝑚 → (𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)))) |
136 | 127, 135 | impbid 211 |
. . . 4
⊢ ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → ((𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)) ↔ 𝑘 = 𝑚)) |
137 | 136 | ralrimiva 3104 |
. . 3
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) → ∀𝑚 ∈ (SubGrp‘𝐺)((𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)) ↔ 𝑘 = 𝑚)) |
138 | | isslw 19222 |
. . 3
⊢ (𝑘 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝑘 ∈ (SubGrp‘𝐺) ∧ ∀𝑚 ∈ (SubGrp‘𝐺)((𝑘 ⊆ 𝑚 ∧ 𝑃 pGrp (𝐺 ↾s 𝑚)) ↔ 𝑘 = 𝑚))) |
139 | 72, 73, 137, 138 | syl3anbrc 1342 |
. 2
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑘 ∈ (𝑃 pSyl 𝐺)) |
140 | 81 | simprd 496 |
. 2
⊢ (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺 ↾s 𝑘) ∧ 𝐻 ⊆ 𝑘) ∧ (𝐹‘𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝐻 ⊆ 𝑘) |
141 | 69, 139, 140 | reximssdv 3206 |
1
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (𝑃 pSyl 𝐺)𝐻 ⊆ 𝑘) |