MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpssslw Structured version   Visualization version   GIF version

Theorem pgpssslw 19512
Description: Every 𝑃-subgroup is contained in a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
pgpssslw.1 𝑋 = (Base‘𝐺)
pgpssslw.2 𝑆 = (𝐺s 𝐻)
pgpssslw.3 𝐹 = (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ↦ (♯‘𝑥))
Assertion
Ref Expression
pgpssslw ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (𝑃 pSyl 𝐺)𝐻𝑘)
Distinct variable groups:   𝑥,𝑘,𝑦,𝐺   𝑘,𝐻,𝑥,𝑦   𝑃,𝑘,𝑥,𝑦   𝑘,𝑋,𝑥   𝑘,𝐹   𝑆,𝑘,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem pgpssslw
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . . . . . . . 10 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝑋 ∈ Fin)
2 elrabi 3645 . . . . . . . . . . 11 (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → 𝑥 ∈ (SubGrp‘𝐺))
3 pgpssslw.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
43subgss 19025 . . . . . . . . . . 11 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝑋)
52, 4syl 17 . . . . . . . . . 10 (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → 𝑥𝑋)
6 ssfi 9097 . . . . . . . . . 10 ((𝑋 ∈ Fin ∧ 𝑥𝑋) → 𝑥 ∈ Fin)
71, 5, 6syl2an 596 . . . . . . . . 9 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → 𝑥 ∈ Fin)
8 hashcl 14282 . . . . . . . . 9 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
97, 8syl 17 . . . . . . . 8 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (♯‘𝑥) ∈ ℕ0)
109nn0zd 12516 . . . . . . 7 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (♯‘𝑥) ∈ ℤ)
11 pgpssslw.3 . . . . . . 7 𝐹 = (𝑥 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ↦ (♯‘𝑥))
1210, 11fmptd 7052 . . . . . 6 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝐹:{𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}⟶ℤ)
1312frnd 6664 . . . . 5 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ran 𝐹 ⊆ ℤ)
14 fvex 6839 . . . . . . . 8 (♯‘𝑥) ∈ V
1514, 11fnmpti 6629 . . . . . . 7 𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}
16 eqimss2 3997 . . . . . . . . . 10 (𝑦 = 𝐻𝐻𝑦)
1716biantrud 531 . . . . . . . . 9 (𝑦 = 𝐻 → (𝑃 pGrp (𝐺s 𝑦) ↔ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)))
18 oveq2 7361 . . . . . . . . . . 11 (𝑦 = 𝐻 → (𝐺s 𝑦) = (𝐺s 𝐻))
19 pgpssslw.2 . . . . . . . . . . 11 𝑆 = (𝐺s 𝐻)
2018, 19eqtr4di 2782 . . . . . . . . . 10 (𝑦 = 𝐻 → (𝐺s 𝑦) = 𝑆)
2120breq2d 5107 . . . . . . . . 9 (𝑦 = 𝐻 → (𝑃 pGrp (𝐺s 𝑦) ↔ 𝑃 pGrp 𝑆))
2217, 21bitr3d 281 . . . . . . . 8 (𝑦 = 𝐻 → ((𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦) ↔ 𝑃 pGrp 𝑆))
23 simp1 1136 . . . . . . . 8 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝐻 ∈ (SubGrp‘𝐺))
24 simp3 1138 . . . . . . . 8 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝑃 pGrp 𝑆)
2522, 23, 24elrabd 3652 . . . . . . 7 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → 𝐻 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)})
26 fnfvelrn 7018 . . . . . . 7 ((𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ∧ 𝐻 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (𝐹𝐻) ∈ ran 𝐹)
2715, 25, 26sylancr 587 . . . . . 6 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → (𝐹𝐻) ∈ ran 𝐹)
2827ne0d 4295 . . . . 5 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ran 𝐹 ≠ ∅)
29 hashcl 14282 . . . . . . . 8 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
301, 29syl 17 . . . . . . 7 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → (♯‘𝑋) ∈ ℕ0)
3130nn0red 12465 . . . . . 6 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → (♯‘𝑋) ∈ ℝ)
32 fveq2 6826 . . . . . . . . . . 11 (𝑥 = 𝑚 → (♯‘𝑥) = (♯‘𝑚))
33 fvex 6839 . . . . . . . . . . 11 (♯‘𝑚) ∈ V
3432, 11, 33fvmpt 6934 . . . . . . . . . 10 (𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → (𝐹𝑚) = (♯‘𝑚))
3534adantl 481 . . . . . . . . 9 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (𝐹𝑚) = (♯‘𝑚))
36 oveq2 7361 . . . . . . . . . . . . 13 (𝑦 = 𝑚 → (𝐺s 𝑦) = (𝐺s 𝑚))
3736breq2d 5107 . . . . . . . . . . . 12 (𝑦 = 𝑚 → (𝑃 pGrp (𝐺s 𝑦) ↔ 𝑃 pGrp (𝐺s 𝑚)))
38 sseq2 3964 . . . . . . . . . . . 12 (𝑦 = 𝑚 → (𝐻𝑦𝐻𝑚))
3937, 38anbi12d 632 . . . . . . . . . . 11 (𝑦 = 𝑚 → ((𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦) ↔ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚)))
4039elrab 3650 . . . . . . . . . 10 (𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ↔ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚)))
411adantr 480 . . . . . . . . . . . 12 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → 𝑋 ∈ Fin)
423subgss 19025 . . . . . . . . . . . . 13 (𝑚 ∈ (SubGrp‘𝐺) → 𝑚𝑋)
4342ad2antrl 728 . . . . . . . . . . . 12 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → 𝑚𝑋)
44 ssdomg 8932 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (𝑚𝑋𝑚𝑋))
4541, 43, 44sylc 65 . . . . . . . . . . 11 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → 𝑚𝑋)
4641, 43ssfid 9170 . . . . . . . . . . . 12 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → 𝑚 ∈ Fin)
47 hashdom 14305 . . . . . . . . . . . 12 ((𝑚 ∈ Fin ∧ 𝑋 ∈ Fin) → ((♯‘𝑚) ≤ (♯‘𝑋) ↔ 𝑚𝑋))
4846, 41, 47syl2anc 584 . . . . . . . . . . 11 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → ((♯‘𝑚) ≤ (♯‘𝑋) ↔ 𝑚𝑋))
4945, 48mpbird 257 . . . . . . . . . 10 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))) → (♯‘𝑚) ≤ (♯‘𝑋))
5040, 49sylan2b 594 . . . . . . . . 9 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (♯‘𝑚) ≤ (♯‘𝑋))
5135, 50eqbrtrd 5117 . . . . . . . 8 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (𝐹𝑚) ≤ (♯‘𝑋))
5251ralrimiva 3121 . . . . . . 7 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∀𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑚) ≤ (♯‘𝑋))
53 breq1 5098 . . . . . . . . 9 (𝑤 = (𝐹𝑚) → (𝑤 ≤ (♯‘𝑋) ↔ (𝐹𝑚) ≤ (♯‘𝑋)))
5453ralrn 7026 . . . . . . . 8 (𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → (∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋) ↔ ∀𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑚) ≤ (♯‘𝑋)))
5515, 54ax-mp 5 . . . . . . 7 (∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋) ↔ ∀𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑚) ≤ (♯‘𝑋))
5652, 55sylibr 234 . . . . . 6 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋))
57 brralrspcev 5155 . . . . . 6 (((♯‘𝑋) ∈ ℝ ∧ ∀𝑤 ∈ ran 𝐹 𝑤 ≤ (♯‘𝑋)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤𝑧)
5831, 56, 57syl2anc 584 . . . . 5 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤𝑧)
59 suprzcl 12575 . . . . 5 ((ran 𝐹 ⊆ ℤ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤𝑧) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
6013, 28, 58, 59syl3anc 1373 . . . 4 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
61 fvelrnb 6887 . . . . 5 (𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))
6215, 61ax-mp 5 . . . 4 (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ↔ ∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑘) = sup(ran 𝐹, ℝ, < ))
6360, 62sylib 218 . . 3 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑘) = sup(ran 𝐹, ℝ, < ))
64 oveq2 7361 . . . . . 6 (𝑦 = 𝑘 → (𝐺s 𝑦) = (𝐺s 𝑘))
6564breq2d 5107 . . . . 5 (𝑦 = 𝑘 → (𝑃 pGrp (𝐺s 𝑦) ↔ 𝑃 pGrp (𝐺s 𝑘)))
66 sseq2 3964 . . . . 5 (𝑦 = 𝑘 → (𝐻𝑦𝐻𝑘))
6765, 66anbi12d 632 . . . 4 (𝑦 = 𝑘 → ((𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦) ↔ (𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘)))
6867rexrab 3658 . . 3 (∃𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} (𝐹𝑘) = sup(ran 𝐹, ℝ, < ) ↔ ∃𝑘 ∈ (SubGrp‘𝐺)((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))
6963, 68sylib 218 . 2 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (SubGrp‘𝐺)((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))
70 simpl3 1194 . . . 4 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑃 pGrp 𝑆)
71 pgpprm 19491 . . . 4 (𝑃 pGrp 𝑆𝑃 ∈ ℙ)
7270, 71syl 17 . . 3 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑃 ∈ ℙ)
73 simprl 770 . . 3 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑘 ∈ (SubGrp‘𝐺))
74 zssre 12497 . . . . . . . . . . . . 13 ℤ ⊆ ℝ
7513, 74sstrdi 3950 . . . . . . . . . . . 12 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ran 𝐹 ⊆ ℝ)
7675ad2antrr 726 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ran 𝐹 ⊆ ℝ)
7728ad2antrr 726 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ran 𝐹 ≠ ∅)
7858ad2antrr 726 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran 𝐹 𝑤𝑧)
79 simprl 770 . . . . . . . . . . . . . 14 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑚 ∈ (SubGrp‘𝐺))
80 simprrr 781 . . . . . . . . . . . . . . 15 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑃 pGrp (𝐺s 𝑚))
81 simprrl 780 . . . . . . . . . . . . . . . . . 18 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → (𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘))
8281adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘))
8382simprd 495 . . . . . . . . . . . . . . . 16 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝐻𝑘)
84 simprrl 780 . . . . . . . . . . . . . . . 16 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘𝑚)
8583, 84sstrd 3948 . . . . . . . . . . . . . . 15 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝐻𝑚)
8680, 85jca 511 . . . . . . . . . . . . . 14 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑃 pGrp (𝐺s 𝑚) ∧ 𝐻𝑚))
8739, 79, 86elrabd 3652 . . . . . . . . . . . . 13 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)})
8887, 34syl 17 . . . . . . . . . . . 12 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝐹𝑚) = (♯‘𝑚))
89 fnfvelrn 7018 . . . . . . . . . . . . 13 ((𝐹 Fn {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} ∧ 𝑚 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)}) → (𝐹𝑚) ∈ ran 𝐹)
9015, 87, 89sylancr 587 . . . . . . . . . . . 12 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝐹𝑚) ∈ ran 𝐹)
9188, 90eqeltrrd 2829 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (♯‘𝑚) ∈ ran 𝐹)
9276, 77, 78, 91suprubd 12106 . . . . . . . . . 10 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (♯‘𝑚) ≤ sup(ran 𝐹, ℝ, < ))
93 simprrr 781 . . . . . . . . . . . 12 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → (𝐹𝑘) = sup(ran 𝐹, ℝ, < ))
9493adantr 480 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝐹𝑘) = sup(ran 𝐹, ℝ, < ))
9573adantr 480 . . . . . . . . . . . . 13 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘 ∈ (SubGrp‘𝐺))
9667, 95, 82elrabd 3652 . . . . . . . . . . . 12 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)})
97 fveq2 6826 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (♯‘𝑥) = (♯‘𝑘))
98 fvex 6839 . . . . . . . . . . . . 13 (♯‘𝑘) ∈ V
9997, 11, 98fvmpt 6934 . . . . . . . . . . . 12 (𝑘 ∈ {𝑦 ∈ (SubGrp‘𝐺) ∣ (𝑃 pGrp (𝐺s 𝑦) ∧ 𝐻𝑦)} → (𝐹𝑘) = (♯‘𝑘))
10096, 99syl 17 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝐹𝑘) = (♯‘𝑘))
10194, 100eqtr3d 2766 . . . . . . . . . 10 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → sup(ran 𝐹, ℝ, < ) = (♯‘𝑘))
10292, 101breqtrd 5121 . . . . . . . . 9 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (♯‘𝑚) ≤ (♯‘𝑘))
103 simpll2 1214 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑋 ∈ Fin)
10442ad2antrl 728 . . . . . . . . . . 11 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑚𝑋)
105103, 104ssfid 9170 . . . . . . . . . 10 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑚 ∈ Fin)
106105, 84ssfid 9170 . . . . . . . . . 10 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘 ∈ Fin)
107 hashcl 14282 . . . . . . . . . . 11 (𝑚 ∈ Fin → (♯‘𝑚) ∈ ℕ0)
108 hashcl 14282 . . . . . . . . . . 11 (𝑘 ∈ Fin → (♯‘𝑘) ∈ ℕ0)
109 nn0re 12412 . . . . . . . . . . . 12 ((♯‘𝑚) ∈ ℕ0 → (♯‘𝑚) ∈ ℝ)
110 nn0re 12412 . . . . . . . . . . . 12 ((♯‘𝑘) ∈ ℕ0 → (♯‘𝑘) ∈ ℝ)
111 lenlt 11213 . . . . . . . . . . . 12 (((♯‘𝑚) ∈ ℝ ∧ (♯‘𝑘) ∈ ℝ) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬ (♯‘𝑘) < (♯‘𝑚)))
112109, 110, 111syl2an 596 . . . . . . . . . . 11 (((♯‘𝑚) ∈ ℕ0 ∧ (♯‘𝑘) ∈ ℕ0) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬ (♯‘𝑘) < (♯‘𝑚)))
113107, 108, 112syl2an 596 . . . . . . . . . 10 ((𝑚 ∈ Fin ∧ 𝑘 ∈ Fin) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬ (♯‘𝑘) < (♯‘𝑚)))
114105, 106, 113syl2anc 584 . . . . . . . . 9 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ((♯‘𝑚) ≤ (♯‘𝑘) ↔ ¬ (♯‘𝑘) < (♯‘𝑚)))
115102, 114mpbid 232 . . . . . . . 8 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ¬ (♯‘𝑘) < (♯‘𝑚))
116 php3 9133 . . . . . . . . . . 11 ((𝑚 ∈ Fin ∧ 𝑘𝑚) → 𝑘𝑚)
117116ex 412 . . . . . . . . . 10 (𝑚 ∈ Fin → (𝑘𝑚𝑘𝑚))
118105, 117syl 17 . . . . . . . . 9 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑘𝑚𝑘𝑚))
119 hashsdom 14307 . . . . . . . . . 10 ((𝑘 ∈ Fin ∧ 𝑚 ∈ Fin) → ((♯‘𝑘) < (♯‘𝑚) ↔ 𝑘𝑚))
120106, 105, 119syl2anc 584 . . . . . . . . 9 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ((♯‘𝑘) < (♯‘𝑚) ↔ 𝑘𝑚))
121118, 120sylibrd 259 . . . . . . . 8 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑘𝑚 → (♯‘𝑘) < (♯‘𝑚)))
122115, 121mtod 198 . . . . . . 7 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → ¬ 𝑘𝑚)
123 sspss 4055 . . . . . . . . 9 (𝑘𝑚 ↔ (𝑘𝑚𝑘 = 𝑚))
12484, 123sylib 218 . . . . . . . 8 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (𝑘𝑚𝑘 = 𝑚))
125124ord 864 . . . . . . 7 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → (¬ 𝑘𝑚𝑘 = 𝑚))
126122, 125mpd 15 . . . . . 6 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ (𝑚 ∈ (SubGrp‘𝐺) ∧ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚)))) → 𝑘 = 𝑚)
127126expr 456 . . . . 5 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → ((𝑘𝑚𝑃 pGrp (𝐺s 𝑚)) → 𝑘 = 𝑚))
12881simpld 494 . . . . . . 7 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑃 pGrp (𝐺s 𝑘))
129128adantr 480 . . . . . 6 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝑘))
130 oveq2 7361 . . . . . . . 8 (𝑘 = 𝑚 → (𝐺s 𝑘) = (𝐺s 𝑚))
131130breq2d 5107 . . . . . . 7 (𝑘 = 𝑚 → (𝑃 pGrp (𝐺s 𝑘) ↔ 𝑃 pGrp (𝐺s 𝑚)))
132 eqimss 3996 . . . . . . . 8 (𝑘 = 𝑚𝑘𝑚)
133132biantrurd 532 . . . . . . 7 (𝑘 = 𝑚 → (𝑃 pGrp (𝐺s 𝑚) ↔ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚))))
134131, 133bitrd 279 . . . . . 6 (𝑘 = 𝑚 → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑘𝑚𝑃 pGrp (𝐺s 𝑚))))
135129, 134syl5ibcom 245 . . . . 5 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → (𝑘 = 𝑚 → (𝑘𝑚𝑃 pGrp (𝐺s 𝑚))))
136127, 135impbid 212 . . . 4 ((((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) ∧ 𝑚 ∈ (SubGrp‘𝐺)) → ((𝑘𝑚𝑃 pGrp (𝐺s 𝑚)) ↔ 𝑘 = 𝑚))
137136ralrimiva 3121 . . 3 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → ∀𝑚 ∈ (SubGrp‘𝐺)((𝑘𝑚𝑃 pGrp (𝐺s 𝑚)) ↔ 𝑘 = 𝑚))
138 isslw 19506 . . 3 (𝑘 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝑘 ∈ (SubGrp‘𝐺) ∧ ∀𝑚 ∈ (SubGrp‘𝐺)((𝑘𝑚𝑃 pGrp (𝐺s 𝑚)) ↔ 𝑘 = 𝑚)))
13972, 73, 137, 138syl3anbrc 1344 . 2 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝑘 ∈ (𝑃 pSyl 𝐺))
14081simprd 495 . 2 (((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ ((𝑃 pGrp (𝐺s 𝑘) ∧ 𝐻𝑘) ∧ (𝐹𝑘) = sup(ran 𝐹, ℝ, < )))) → 𝐻𝑘)
14169, 139, 140reximssdv 3147 1 ((𝐻 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp 𝑆) → ∃𝑘 ∈ (𝑃 pSyl 𝐺)𝐻𝑘)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  wss 3905  wpss 3906  c0 4286   class class class wbr 5095  cmpt 5176  ran crn 5624   Fn wfn 6481  cfv 6486  (class class class)co 7353  cdom 8877  csdm 8878  Fincfn 8879  supcsup 9349  cr 11027   < clt 11168  cle 11169  0cn0 12403  cz 12490  chash 14256  cprime 16601  Basecbs 17139  s cress 17160  SubGrpcsubg 19018   pGrp cpgp 19424   pSyl cslw 19425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-xnn0 12477  df-z 12491  df-uz 12755  df-fz 13430  df-hash 14257  df-subg 19021  df-pgp 19428  df-slw 19429
This theorem is referenced by:  slwn0  19513
  Copyright terms: Public domain W3C validator