Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngnzply1 Structured version   Visualization version   GIF version

Theorem irngnzply1 33737
Description: In the case of a field 𝐸, the roots of nonzero polynomials 𝑝 with coefficients in a subfield 𝐹 are exactly the integral elements over 𝐹. Roots of nonzero polynomials are called algebraic numbers, so this shows that in the case of a field, elements integral over 𝐹 are exactly the algebraic numbers. In this formula, dom 𝑂 represents the polynomials, and 𝑍 the zero polynomial. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
irngnzply1.o 𝑂 = (𝐸 evalSub1 𝐹)
irngnzply1.z 𝑍 = (0g‘(Poly1𝐸))
irngnzply1.1 0 = (0g𝐸)
irngnzply1.e (𝜑𝐸 ∈ Field)
irngnzply1.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
Assertion
Ref Expression
irngnzply1 (𝜑 → (𝐸 IntgRing 𝐹) = 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
Distinct variable groups:   𝐸,𝑝   𝐹,𝑝   𝑂,𝑝   𝜑,𝑝
Allowed substitution hints:   0 (𝑝)   𝑍(𝑝)

Proof of Theorem irngnzply1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 irngnzply1.o . . . . . . . 8 𝑂 = (𝐸 evalSub1 𝐹)
2 eqid 2736 . . . . . . . 8 (𝐸s 𝐹) = (𝐸s 𝐹)
3 eqid 2736 . . . . . . . 8 (Base‘𝐸) = (Base‘𝐸)
4 irngnzply1.1 . . . . . . . 8 0 = (0g𝐸)
5 irngnzply1.e . . . . . . . . 9 (𝜑𝐸 ∈ Field)
65fldcrngd 20707 . . . . . . . 8 (𝜑𝐸 ∈ CRing)
7 irngnzply1.f . . . . . . . . . 10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
8 issdrg 20753 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
97, 8sylib 218 . . . . . . . . 9 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
109simp2d 1143 . . . . . . . 8 (𝜑𝐹 ∈ (SubRing‘𝐸))
111, 2, 3, 4, 6, 10elirng 33732 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑥 ∈ (Base‘𝐸) ∧ ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑥) = 0 )))
1211biimpa 476 . . . . . 6 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → (𝑥 ∈ (Base‘𝐸) ∧ ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑥) = 0 ))
1312simprd 495 . . . . 5 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑥) = 0 )
14 eqid 2736 . . . . . . . . . 10 (Poly1‘(𝐸s 𝐹)) = (Poly1‘(𝐸s 𝐹))
15 eqid 2736 . . . . . . . . . 10 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(Poly1‘(𝐸s 𝐹)))
16 eqid 2736 . . . . . . . . . 10 (Monic1p‘(𝐸s 𝐹)) = (Monic1p‘(𝐸s 𝐹))
1714, 15, 16mon1pcl 26107 . . . . . . . . 9 (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
1817adantl 481 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
19 eqid 2736 . . . . . . . . . . . . 13 (𝐸s (Base‘𝐸)) = (𝐸s (Base‘𝐸))
201, 3, 19, 2, 14evls1rhm 22265 . . . . . . . . . . . 12 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s (Base‘𝐸))))
216, 10, 20syl2anc 584 . . . . . . . . . . 11 (𝜑𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s (Base‘𝐸))))
22 eqid 2736 . . . . . . . . . . . 12 (Base‘(𝐸s (Base‘𝐸))) = (Base‘(𝐸s (Base‘𝐸)))
2315, 22rhmf 20450 . . . . . . . . . . 11 (𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s (Base‘𝐸))) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
2421, 23syl 17 . . . . . . . . . 10 (𝜑𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
2524fdmd 6721 . . . . . . . . 9 (𝜑 → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
2625adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
2718, 26eleqtrrd 2838 . . . . . . 7 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ∈ dom 𝑂)
28 eqid 2736 . . . . . . . . . 10 (0g‘(Poly1‘(𝐸s 𝐹))) = (0g‘(Poly1‘(𝐸s 𝐹)))
2914, 28, 16mon1pn0 26109 . . . . . . . . 9 (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) → 𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
3029adantl 481 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
31 eqid 2736 . . . . . . . . . 10 (Poly1𝐸) = (Poly1𝐸)
32 irngnzply1.z . . . . . . . . . 10 𝑍 = (0g‘(Poly1𝐸))
3331, 2, 14, 15, 10, 32ressply10g 33585 . . . . . . . . 9 (𝜑𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
3433adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
3530, 34neeqtrrd 3007 . . . . . . 7 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝𝑍)
36 eldifsn 4767 . . . . . . 7 (𝑝 ∈ (dom 𝑂 ∖ {𝑍}) ↔ (𝑝 ∈ dom 𝑂𝑝𝑍))
3727, 35, 36sylanbrc 583 . . . . . 6 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ∈ (dom 𝑂 ∖ {𝑍}))
3837ad2ant2r 747 . . . . 5 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑝 ∈ (dom 𝑂 ∖ {𝑍}))
395ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝐸 ∈ Field)
40 fvexd 6896 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (Base‘𝐸) ∈ V)
4124ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
4217ad2antrl 728 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
4341, 42ffvelcdmd 7080 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (𝑂𝑝) ∈ (Base‘(𝐸s (Base‘𝐸))))
4419, 3, 22, 39, 40, 43pwselbas 17508 . . . . . . 7 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (𝑂𝑝):(Base‘𝐸)⟶(Base‘𝐸))
4544ffnd 6712 . . . . . 6 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (𝑂𝑝) Fn (Base‘𝐸))
4612simpld 494 . . . . . . 7 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → 𝑥 ∈ (Base‘𝐸))
4746adantr 480 . . . . . 6 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑥 ∈ (Base‘𝐸))
48 simprr 772 . . . . . 6 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → ((𝑂𝑝)‘𝑥) = 0 )
49 fniniseg 7055 . . . . . . 7 ((𝑂𝑝) Fn (Base‘𝐸) → (𝑥 ∈ ((𝑂𝑝) “ { 0 }) ↔ (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 )))
5049biimpar 477 . . . . . 6 (((𝑂𝑝) Fn (Base‘𝐸) ∧ (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑥 ∈ ((𝑂𝑝) “ { 0 }))
5145, 47, 48, 50syl12anc 836 . . . . 5 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑥 ∈ ((𝑂𝑝) “ { 0 }))
5213, 38, 51reximssdv 3159 . . . 4 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
53 eliun 4976 . . . 4 (𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }) ↔ ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
5452, 53sylibr 234 . . 3 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → 𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
55 nfv 1914 . . . . 5 𝑝𝜑
56 nfiu1 5008 . . . . . 6 𝑝 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })
5756nfcri 2891 . . . . 5 𝑝 𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })
5855, 57nfan 1899 . . . 4 𝑝(𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
595ad2antrr 726 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝐸 ∈ Field)
607ad2antrr 726 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝐹 ∈ (SubDRing‘𝐸))
61 eldifi 4111 . . . . . . . 8 (𝑝 ∈ (dom 𝑂 ∖ {𝑍}) → 𝑝 ∈ dom 𝑂)
6261adantl 481 . . . . . . 7 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑝 ∈ dom 𝑂)
6362adantr 480 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑝 ∈ dom 𝑂)
64 eldifsni 4771 . . . . . . . 8 (𝑝 ∈ (dom 𝑂 ∖ {𝑍}) → 𝑝𝑍)
6564adantl 481 . . . . . . 7 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑝𝑍)
6665adantr 480 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑝𝑍)
675adantr 480 . . . . . . . . . 10 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝐸 ∈ Field)
68 fvexd 6896 . . . . . . . . . 10 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (Base‘𝐸) ∈ V)
6924adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
7025adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
7162, 70eleqtrd 2837 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
7269, 71ffvelcdmd 7080 . . . . . . . . . 10 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (𝑂𝑝) ∈ (Base‘(𝐸s (Base‘𝐸))))
7319, 3, 22, 67, 68, 72pwselbas 17508 . . . . . . . . 9 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (𝑂𝑝):(Base‘𝐸)⟶(Base‘𝐸))
7473ffnd 6712 . . . . . . . 8 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (𝑂𝑝) Fn (Base‘𝐸))
7549biimpa 476 . . . . . . . 8 (((𝑂𝑝) Fn (Base‘𝐸) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 ))
7674, 75sylan 580 . . . . . . 7 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 ))
7776simprd 495 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → ((𝑂𝑝)‘𝑥) = 0 )
7876simpld 494 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (Base‘𝐸))
791, 32, 4, 59, 60, 3, 63, 66, 77, 78irngnzply1lem 33736 . . . . 5 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (𝐸 IntgRing 𝐹))
8079adantllr 719 . . . 4 ((((𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })) ∧ 𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (𝐸 IntgRing 𝐹))
8153biimpi 216 . . . . 5 (𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }) → ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
8281adantl 481 . . . 4 ((𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })) → ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
8358, 80, 82r19.29af 3255 . . 3 ((𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (𝐸 IntgRing 𝐹))
8454, 83impbida 800 . 2 (𝜑 → (𝑥 ∈ (𝐸 IntgRing 𝐹) ↔ 𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })))
8584eqrdv 2734 1 (𝜑 → (𝐸 IntgRing 𝐹) = 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  Vcvv 3464  cdif 3928  {csn 4606   ciun 4972  ccnv 5658  dom cdm 5659  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  0gc0g 17458  s cpws 17465  CRingccrg 20199   RingHom crh 20434  SubRingcsubrg 20534  DivRingcdr 20694  Fieldcfield 20695  SubDRingcsdrg 20751  Poly1cpl1 22117   evalSub1 ces1 22256  Monic1pcmn1 26088   IntgRing cirng 33729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-drng 20696  df-field 20697  df-sdrg 20752  df-lmod 20824  df-lss 20894  df-lsp 20934  df-cnfld 21321  df-assa 21818  df-asp 21819  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-evls 22037  df-evl 22038  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-evls1 22258  df-evl1 22259  df-mdeg 26017  df-deg1 26018  df-mon1 26093  df-uc1p 26094  df-irng 33730
This theorem is referenced by:  irngnminplynz  33751
  Copyright terms: Public domain W3C validator