Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngnzply1 Structured version   Visualization version   GIF version

Theorem irngnzply1 33686
Description: In the case of a field 𝐸, the roots of nonzero polynomials 𝑝 with coefficients in a subfield 𝐹 are exactly the integral elements over 𝐹. Roots of nonzero polynomials are called algebraic numbers, so this shows that in the case of a field, elements integral over 𝐹 are exactly the algebraic numbers. In this formula, dom 𝑂 represents the polynomials, and 𝑍 the zero polynomial. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
irngnzply1.o 𝑂 = (𝐸 evalSub1 𝐹)
irngnzply1.z 𝑍 = (0g‘(Poly1𝐸))
irngnzply1.1 0 = (0g𝐸)
irngnzply1.e (𝜑𝐸 ∈ Field)
irngnzply1.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
Assertion
Ref Expression
irngnzply1 (𝜑 → (𝐸 IntgRing 𝐹) = 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
Distinct variable groups:   𝐸,𝑝   𝐹,𝑝   𝑂,𝑝   𝜑,𝑝
Allowed substitution hints:   0 (𝑝)   𝑍(𝑝)

Proof of Theorem irngnzply1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 irngnzply1.o . . . . . . . 8 𝑂 = (𝐸 evalSub1 𝐹)
2 eqid 2729 . . . . . . . 8 (𝐸s 𝐹) = (𝐸s 𝐹)
3 eqid 2729 . . . . . . . 8 (Base‘𝐸) = (Base‘𝐸)
4 irngnzply1.1 . . . . . . . 8 0 = (0g𝐸)
5 irngnzply1.e . . . . . . . . 9 (𝜑𝐸 ∈ Field)
65fldcrngd 20651 . . . . . . . 8 (𝜑𝐸 ∈ CRing)
7 irngnzply1.f . . . . . . . . . 10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
8 issdrg 20697 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
97, 8sylib 218 . . . . . . . . 9 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
109simp2d 1143 . . . . . . . 8 (𝜑𝐹 ∈ (SubRing‘𝐸))
111, 2, 3, 4, 6, 10elirng 33681 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑥 ∈ (Base‘𝐸) ∧ ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑥) = 0 )))
1211biimpa 476 . . . . . 6 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → (𝑥 ∈ (Base‘𝐸) ∧ ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑥) = 0 ))
1312simprd 495 . . . . 5 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑥) = 0 )
14 eqid 2729 . . . . . . . . . 10 (Poly1‘(𝐸s 𝐹)) = (Poly1‘(𝐸s 𝐹))
15 eqid 2729 . . . . . . . . . 10 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(Poly1‘(𝐸s 𝐹)))
16 eqid 2729 . . . . . . . . . 10 (Monic1p‘(𝐸s 𝐹)) = (Monic1p‘(𝐸s 𝐹))
1714, 15, 16mon1pcl 26050 . . . . . . . . 9 (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
1817adantl 481 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
19 eqid 2729 . . . . . . . . . . . . 13 (𝐸s (Base‘𝐸)) = (𝐸s (Base‘𝐸))
201, 3, 19, 2, 14evls1rhm 22209 . . . . . . . . . . . 12 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s (Base‘𝐸))))
216, 10, 20syl2anc 584 . . . . . . . . . . 11 (𝜑𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s (Base‘𝐸))))
22 eqid 2729 . . . . . . . . . . . 12 (Base‘(𝐸s (Base‘𝐸))) = (Base‘(𝐸s (Base‘𝐸)))
2315, 22rhmf 20394 . . . . . . . . . . 11 (𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s (Base‘𝐸))) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
2421, 23syl 17 . . . . . . . . . 10 (𝜑𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
2524fdmd 6698 . . . . . . . . 9 (𝜑 → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
2625adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
2718, 26eleqtrrd 2831 . . . . . . 7 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ∈ dom 𝑂)
28 eqid 2729 . . . . . . . . . 10 (0g‘(Poly1‘(𝐸s 𝐹))) = (0g‘(Poly1‘(𝐸s 𝐹)))
2914, 28, 16mon1pn0 26052 . . . . . . . . 9 (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) → 𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
3029adantl 481 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
31 eqid 2729 . . . . . . . . . 10 (Poly1𝐸) = (Poly1𝐸)
32 irngnzply1.z . . . . . . . . . 10 𝑍 = (0g‘(Poly1𝐸))
3331, 2, 14, 15, 10, 32ressply10g 33536 . . . . . . . . 9 (𝜑𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
3433adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
3530, 34neeqtrrd 2999 . . . . . . 7 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝𝑍)
36 eldifsn 4750 . . . . . . 7 (𝑝 ∈ (dom 𝑂 ∖ {𝑍}) ↔ (𝑝 ∈ dom 𝑂𝑝𝑍))
3727, 35, 36sylanbrc 583 . . . . . 6 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ∈ (dom 𝑂 ∖ {𝑍}))
3837ad2ant2r 747 . . . . 5 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑝 ∈ (dom 𝑂 ∖ {𝑍}))
395ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝐸 ∈ Field)
40 fvexd 6873 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (Base‘𝐸) ∈ V)
4124ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
4217ad2antrl 728 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
4341, 42ffvelcdmd 7057 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (𝑂𝑝) ∈ (Base‘(𝐸s (Base‘𝐸))))
4419, 3, 22, 39, 40, 43pwselbas 17452 . . . . . . 7 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (𝑂𝑝):(Base‘𝐸)⟶(Base‘𝐸))
4544ffnd 6689 . . . . . 6 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (𝑂𝑝) Fn (Base‘𝐸))
4612simpld 494 . . . . . . 7 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → 𝑥 ∈ (Base‘𝐸))
4746adantr 480 . . . . . 6 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑥 ∈ (Base‘𝐸))
48 simprr 772 . . . . . 6 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → ((𝑂𝑝)‘𝑥) = 0 )
49 fniniseg 7032 . . . . . . 7 ((𝑂𝑝) Fn (Base‘𝐸) → (𝑥 ∈ ((𝑂𝑝) “ { 0 }) ↔ (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 )))
5049biimpar 477 . . . . . 6 (((𝑂𝑝) Fn (Base‘𝐸) ∧ (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑥 ∈ ((𝑂𝑝) “ { 0 }))
5145, 47, 48, 50syl12anc 836 . . . . 5 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑥 ∈ ((𝑂𝑝) “ { 0 }))
5213, 38, 51reximssdv 3151 . . . 4 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
53 eliun 4959 . . . 4 (𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }) ↔ ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
5452, 53sylibr 234 . . 3 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → 𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
55 nfv 1914 . . . . 5 𝑝𝜑
56 nfiu1 4991 . . . . . 6 𝑝 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })
5756nfcri 2883 . . . . 5 𝑝 𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })
5855, 57nfan 1899 . . . 4 𝑝(𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
595ad2antrr 726 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝐸 ∈ Field)
607ad2antrr 726 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝐹 ∈ (SubDRing‘𝐸))
61 eldifi 4094 . . . . . . . 8 (𝑝 ∈ (dom 𝑂 ∖ {𝑍}) → 𝑝 ∈ dom 𝑂)
6261adantl 481 . . . . . . 7 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑝 ∈ dom 𝑂)
6362adantr 480 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑝 ∈ dom 𝑂)
64 eldifsni 4754 . . . . . . . 8 (𝑝 ∈ (dom 𝑂 ∖ {𝑍}) → 𝑝𝑍)
6564adantl 481 . . . . . . 7 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑝𝑍)
6665adantr 480 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑝𝑍)
675adantr 480 . . . . . . . . . 10 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝐸 ∈ Field)
68 fvexd 6873 . . . . . . . . . 10 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (Base‘𝐸) ∈ V)
6924adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
7025adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
7162, 70eleqtrd 2830 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
7269, 71ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (𝑂𝑝) ∈ (Base‘(𝐸s (Base‘𝐸))))
7319, 3, 22, 67, 68, 72pwselbas 17452 . . . . . . . . 9 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (𝑂𝑝):(Base‘𝐸)⟶(Base‘𝐸))
7473ffnd 6689 . . . . . . . 8 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (𝑂𝑝) Fn (Base‘𝐸))
7549biimpa 476 . . . . . . . 8 (((𝑂𝑝) Fn (Base‘𝐸) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 ))
7674, 75sylan 580 . . . . . . 7 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 ))
7776simprd 495 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → ((𝑂𝑝)‘𝑥) = 0 )
7876simpld 494 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (Base‘𝐸))
791, 32, 4, 59, 60, 3, 63, 66, 77, 78irngnzply1lem 33685 . . . . 5 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (𝐸 IntgRing 𝐹))
8079adantllr 719 . . . 4 ((((𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })) ∧ 𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (𝐸 IntgRing 𝐹))
8153biimpi 216 . . . . 5 (𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }) → ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
8281adantl 481 . . . 4 ((𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })) → ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
8358, 80, 82r19.29af 3246 . . 3 ((𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (𝐸 IntgRing 𝐹))
8454, 83impbida 800 . 2 (𝜑 → (𝑥 ∈ (𝐸 IntgRing 𝐹) ↔ 𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })))
8584eqrdv 2727 1 (𝜑 → (𝐸 IntgRing 𝐹) = 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3447  cdif 3911  {csn 4589   ciun 4955  ccnv 5637  dom cdm 5638  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  0gc0g 17402  s cpws 17409  CRingccrg 20143   RingHom crh 20378  SubRingcsubrg 20478  DivRingcdr 20638  Fieldcfield 20639  SubDRingcsdrg 20695  Poly1cpl1 22061   evalSub1 ces1 22200  Monic1pcmn1 26031   IntgRing cirng 33678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-drng 20640  df-field 20641  df-sdrg 20696  df-lmod 20768  df-lss 20838  df-lsp 20878  df-cnfld 21265  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evls1 22202  df-evl1 22203  df-mdeg 25960  df-deg1 25961  df-mon1 26036  df-uc1p 26037  df-irng 33679
This theorem is referenced by:  irngnminplynz  33702
  Copyright terms: Public domain W3C validator