Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngnzply1 Structured version   Visualization version   GIF version

Theorem irngnzply1 33681
Description: In the case of a field 𝐸, the roots of nonzero polynomials 𝑝 with coefficients in a subfield 𝐹 are exactly the integral elements over 𝐹. Roots of nonzero polynomials are called algebraic numbers, so this shows that in the case of a field, elements integral over 𝐹 are exactly the algebraic numbers. In this formula, dom 𝑂 represents the polynomials, and 𝑍 the zero polynomial. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
irngnzply1.o 𝑂 = (𝐸 evalSub1 𝐹)
irngnzply1.z 𝑍 = (0g‘(Poly1𝐸))
irngnzply1.1 0 = (0g𝐸)
irngnzply1.e (𝜑𝐸 ∈ Field)
irngnzply1.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
Assertion
Ref Expression
irngnzply1 (𝜑 → (𝐸 IntgRing 𝐹) = 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
Distinct variable groups:   𝐸,𝑝   𝐹,𝑝   𝑂,𝑝   𝜑,𝑝
Allowed substitution hints:   0 (𝑝)   𝑍(𝑝)

Proof of Theorem irngnzply1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 irngnzply1.o . . . . . . . 8 𝑂 = (𝐸 evalSub1 𝐹)
2 eqid 2729 . . . . . . . 8 (𝐸s 𝐹) = (𝐸s 𝐹)
3 eqid 2729 . . . . . . . 8 (Base‘𝐸) = (Base‘𝐸)
4 irngnzply1.1 . . . . . . . 8 0 = (0g𝐸)
5 irngnzply1.e . . . . . . . . 9 (𝜑𝐸 ∈ Field)
65fldcrngd 20664 . . . . . . . 8 (𝜑𝐸 ∈ CRing)
7 irngnzply1.f . . . . . . . . . 10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
8 issdrg 20710 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
97, 8sylib 218 . . . . . . . . 9 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
109simp2d 1143 . . . . . . . 8 (𝜑𝐹 ∈ (SubRing‘𝐸))
111, 2, 3, 4, 6, 10elirng 33676 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑥 ∈ (Base‘𝐸) ∧ ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑥) = 0 )))
1211biimpa 476 . . . . . 6 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → (𝑥 ∈ (Base‘𝐸) ∧ ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑥) = 0 ))
1312simprd 495 . . . . 5 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑥) = 0 )
14 eqid 2729 . . . . . . . . . 10 (Poly1‘(𝐸s 𝐹)) = (Poly1‘(𝐸s 𝐹))
15 eqid 2729 . . . . . . . . . 10 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(Poly1‘(𝐸s 𝐹)))
16 eqid 2729 . . . . . . . . . 10 (Monic1p‘(𝐸s 𝐹)) = (Monic1p‘(𝐸s 𝐹))
1714, 15, 16mon1pcl 26085 . . . . . . . . 9 (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
1817adantl 481 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
19 eqid 2729 . . . . . . . . . . . . 13 (𝐸s (Base‘𝐸)) = (𝐸s (Base‘𝐸))
201, 3, 19, 2, 14evls1rhm 22244 . . . . . . . . . . . 12 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s (Base‘𝐸))))
216, 10, 20syl2anc 584 . . . . . . . . . . 11 (𝜑𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s (Base‘𝐸))))
22 eqid 2729 . . . . . . . . . . . 12 (Base‘(𝐸s (Base‘𝐸))) = (Base‘(𝐸s (Base‘𝐸)))
2315, 22rhmf 20407 . . . . . . . . . . 11 (𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s (Base‘𝐸))) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
2421, 23syl 17 . . . . . . . . . 10 (𝜑𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
2524fdmd 6681 . . . . . . . . 9 (𝜑 → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
2625adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
2718, 26eleqtrrd 2831 . . . . . . 7 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ∈ dom 𝑂)
28 eqid 2729 . . . . . . . . . 10 (0g‘(Poly1‘(𝐸s 𝐹))) = (0g‘(Poly1‘(𝐸s 𝐹)))
2914, 28, 16mon1pn0 26087 . . . . . . . . 9 (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) → 𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
3029adantl 481 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
31 eqid 2729 . . . . . . . . . 10 (Poly1𝐸) = (Poly1𝐸)
32 irngnzply1.z . . . . . . . . . 10 𝑍 = (0g‘(Poly1𝐸))
3331, 2, 14, 15, 10, 32ressply10g 33531 . . . . . . . . 9 (𝜑𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
3433adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
3530, 34neeqtrrd 2999 . . . . . . 7 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝𝑍)
36 eldifsn 4746 . . . . . . 7 (𝑝 ∈ (dom 𝑂 ∖ {𝑍}) ↔ (𝑝 ∈ dom 𝑂𝑝𝑍))
3727, 35, 36sylanbrc 583 . . . . . 6 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ∈ (dom 𝑂 ∖ {𝑍}))
3837ad2ant2r 747 . . . . 5 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑝 ∈ (dom 𝑂 ∖ {𝑍}))
395ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝐸 ∈ Field)
40 fvexd 6856 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (Base‘𝐸) ∈ V)
4124ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
4217ad2antrl 728 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
4341, 42ffvelcdmd 7040 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (𝑂𝑝) ∈ (Base‘(𝐸s (Base‘𝐸))))
4419, 3, 22, 39, 40, 43pwselbas 17430 . . . . . . 7 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (𝑂𝑝):(Base‘𝐸)⟶(Base‘𝐸))
4544ffnd 6672 . . . . . 6 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (𝑂𝑝) Fn (Base‘𝐸))
4612simpld 494 . . . . . . 7 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → 𝑥 ∈ (Base‘𝐸))
4746adantr 480 . . . . . 6 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑥 ∈ (Base‘𝐸))
48 simprr 772 . . . . . 6 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → ((𝑂𝑝)‘𝑥) = 0 )
49 fniniseg 7015 . . . . . . 7 ((𝑂𝑝) Fn (Base‘𝐸) → (𝑥 ∈ ((𝑂𝑝) “ { 0 }) ↔ (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 )))
5049biimpar 477 . . . . . 6 (((𝑂𝑝) Fn (Base‘𝐸) ∧ (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑥 ∈ ((𝑂𝑝) “ { 0 }))
5145, 47, 48, 50syl12anc 836 . . . . 5 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑥 ∈ ((𝑂𝑝) “ { 0 }))
5213, 38, 51reximssdv 3151 . . . 4 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
53 eliun 4955 . . . 4 (𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }) ↔ ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
5452, 53sylibr 234 . . 3 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → 𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
55 nfv 1914 . . . . 5 𝑝𝜑
56 nfiu1 4987 . . . . . 6 𝑝 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })
5756nfcri 2883 . . . . 5 𝑝 𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })
5855, 57nfan 1899 . . . 4 𝑝(𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
595ad2antrr 726 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝐸 ∈ Field)
607ad2antrr 726 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝐹 ∈ (SubDRing‘𝐸))
61 eldifi 4090 . . . . . . . 8 (𝑝 ∈ (dom 𝑂 ∖ {𝑍}) → 𝑝 ∈ dom 𝑂)
6261adantl 481 . . . . . . 7 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑝 ∈ dom 𝑂)
6362adantr 480 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑝 ∈ dom 𝑂)
64 eldifsni 4750 . . . . . . . 8 (𝑝 ∈ (dom 𝑂 ∖ {𝑍}) → 𝑝𝑍)
6564adantl 481 . . . . . . 7 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑝𝑍)
6665adantr 480 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑝𝑍)
675adantr 480 . . . . . . . . . 10 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝐸 ∈ Field)
68 fvexd 6856 . . . . . . . . . 10 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (Base‘𝐸) ∈ V)
6924adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
7025adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
7162, 70eleqtrd 2830 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
7269, 71ffvelcdmd 7040 . . . . . . . . . 10 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (𝑂𝑝) ∈ (Base‘(𝐸s (Base‘𝐸))))
7319, 3, 22, 67, 68, 72pwselbas 17430 . . . . . . . . 9 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (𝑂𝑝):(Base‘𝐸)⟶(Base‘𝐸))
7473ffnd 6672 . . . . . . . 8 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (𝑂𝑝) Fn (Base‘𝐸))
7549biimpa 476 . . . . . . . 8 (((𝑂𝑝) Fn (Base‘𝐸) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 ))
7674, 75sylan 580 . . . . . . 7 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 ))
7776simprd 495 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → ((𝑂𝑝)‘𝑥) = 0 )
7876simpld 494 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (Base‘𝐸))
791, 32, 4, 59, 60, 3, 63, 66, 77, 78irngnzply1lem 33680 . . . . 5 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (𝐸 IntgRing 𝐹))
8079adantllr 719 . . . 4 ((((𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })) ∧ 𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (𝐸 IntgRing 𝐹))
8153biimpi 216 . . . . 5 (𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }) → ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
8281adantl 481 . . . 4 ((𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })) → ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
8358, 80, 82r19.29af 3244 . . 3 ((𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (𝐸 IntgRing 𝐹))
8454, 83impbida 800 . 2 (𝜑 → (𝑥 ∈ (𝐸 IntgRing 𝐹) ↔ 𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })))
8584eqrdv 2727 1 (𝜑 → (𝐸 IntgRing 𝐹) = 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3444  cdif 3908  {csn 4585   ciun 4951  ccnv 5630  dom cdm 5631  cima 5634   Fn wfn 6495  wf 6496  cfv 6500  (class class class)co 7370  Basecbs 17157  s cress 17178  0gc0g 17380  s cpws 17387  CRingccrg 20156   RingHom crh 20391  SubRingcsubrg 20491  DivRingcdr 20651  Fieldcfield 20652  SubDRingcsdrg 20708  Poly1cpl1 22096   evalSub1 ces1 22235  Monic1pcmn1 26066   IntgRing cirng 33673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-addf 11126
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-of 7634  df-ofr 7635  df-om 7824  df-1st 7948  df-2nd 7949  df-supp 8118  df-tpos 8183  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8649  df-map 8779  df-pm 8780  df-ixp 8849  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-fsupp 9290  df-sup 9370  df-oi 9440  df-card 9871  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-nn 12166  df-2 12228  df-3 12229  df-4 12230  df-5 12231  df-6 12232  df-7 12233  df-8 12234  df-9 12235  df-n0 12422  df-z 12509  df-dec 12629  df-uz 12773  df-fz 13448  df-fzo 13595  df-seq 13946  df-hash 14275  df-struct 17095  df-sets 17112  df-slot 17130  df-ndx 17142  df-base 17158  df-ress 17179  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-0g 17382  df-gsum 17383  df-prds 17388  df-pws 17390  df-mre 17525  df-mrc 17526  df-acs 17528  df-mgm 18551  df-sgrp 18630  df-mnd 18646  df-mhm 18694  df-submnd 18695  df-grp 18852  df-minusg 18853  df-sbg 18854  df-mulg 18984  df-subg 19039  df-ghm 19129  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-srg 20109  df-ring 20157  df-cring 20158  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-rhm 20394  df-subrng 20468  df-subrg 20492  df-rlreg 20616  df-drng 20653  df-field 20654  df-sdrg 20709  df-lmod 20802  df-lss 20872  df-lsp 20912  df-cnfld 21299  df-assa 21797  df-asp 21798  df-ascl 21799  df-psr 21853  df-mvr 21854  df-mpl 21855  df-opsr 21857  df-evls 22016  df-evl 22017  df-psr1 22099  df-vr1 22100  df-ply1 22101  df-coe1 22102  df-evls1 22237  df-evl1 22238  df-mdeg 25995  df-deg1 25996  df-mon1 26071  df-uc1p 26072  df-irng 33674
This theorem is referenced by:  irngnminplynz  33697
  Copyright terms: Public domain W3C validator