MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6s2 Structured version   Visualization version   GIF version

Theorem ac6s2 10524
Description: Generalization of the Axiom of Choice to classes. Slightly strengthened version of ac6s3 10525. (Contributed by NM, 29-Sep-2006.)
Hypotheses
Ref Expression
ac6s.1 𝐴 ∈ V
ac6s.2 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6s2 (∀𝑥𝐴𝑦𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑦,𝑓   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6s2
StepHypRef Expression
1 rexv 3507 . . 3 (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑)
21ralbii 3091 . 2 (∀𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∀𝑥𝐴𝑦𝜑)
3 ac6s.1 . . . 4 𝐴 ∈ V
4 ac6s.2 . . . 4 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
53, 4ac6s 10522 . . 3 (∀𝑥𝐴𝑦 ∈ V 𝜑 → ∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥𝐴 𝜓))
6 ffn 6737 . . . . 5 (𝑓:𝐴⟶V → 𝑓 Fn 𝐴)
76anim1i 615 . . . 4 ((𝑓:𝐴⟶V ∧ ∀𝑥𝐴 𝜓) → (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓))
87eximi 1832 . . 3 (∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥𝐴 𝜓) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓))
95, 8syl 17 . 2 (∀𝑥𝐴𝑦 ∈ V 𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓))
102, 9sylbir 235 1 (∀𝑥𝐴𝑦𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  wrex 3068  Vcvv 3478   Fn wfn 6558  wf 6559  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679  ax-ac2 10501
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-en 8985  df-r1 9802  df-rank 9803  df-card 9977  df-ac 10154
This theorem is referenced by:  ac6s3  10525  ac6s4  10528  ptpconn  35218  ctbssinf  37389
  Copyright terms: Public domain W3C validator