MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6s2 Structured version   Visualization version   GIF version

Theorem ac6s2 10100
Description: Generalization of the Axiom of Choice to classes. Slightly strengthened version of ac6s3 10101. (Contributed by NM, 29-Sep-2006.)
Hypotheses
Ref Expression
ac6s.1 𝐴 ∈ V
ac6s.2 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6s2 (∀𝑥𝐴𝑦𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑦,𝑓   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6s2
StepHypRef Expression
1 rexv 3433 . . 3 (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑)
21ralbii 3088 . 2 (∀𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∀𝑥𝐴𝑦𝜑)
3 ac6s.1 . . . 4 𝐴 ∈ V
4 ac6s.2 . . . 4 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
53, 4ac6s 10098 . . 3 (∀𝑥𝐴𝑦 ∈ V 𝜑 → ∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥𝐴 𝜓))
6 ffn 6545 . . . . 5 (𝑓:𝐴⟶V → 𝑓 Fn 𝐴)
76anim1i 618 . . . 4 ((𝑓:𝐴⟶V ∧ ∀𝑥𝐴 𝜓) → (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓))
87eximi 1842 . . 3 (∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥𝐴 𝜓) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓))
95, 8syl 17 . 2 (∀𝑥𝐴𝑦 ∈ V 𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓))
102, 9sylbir 238 1 (∀𝑥𝐴𝑦𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2110  wral 3061  wrex 3062  Vcvv 3408   Fn wfn 6375  wf 6376  cfv 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-reg 9208  ax-inf2 9256  ax-ac2 10077
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-en 8627  df-r1 9380  df-rank 9381  df-card 9555  df-ac 9730
This theorem is referenced by:  ac6s3  10101  ac6s4  10104  ptpconn  32908  ctbssinf  35314
  Copyright terms: Public domain W3C validator