![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac6s2 | Structured version Visualization version GIF version |
Description: Generalization of the Axiom of Choice to classes. Slightly strengthened version of ac6s3 9705. (Contributed by NM, 29-Sep-2006.) |
Ref | Expression |
---|---|
ac6s.1 | ⊢ 𝐴 ∈ V |
ac6s.2 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6s2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexv 3434 | . . 3 ⊢ (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑) | |
2 | 1 | ralbii 3108 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑) |
3 | ac6s.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | ac6s.2 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | ac6s 9702 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 → ∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | ffn 6341 | . . . . 5 ⊢ (𝑓:𝐴⟶V → 𝑓 Fn 𝐴) | |
7 | 6 | anim1i 606 | . . . 4 ⊢ ((𝑓:𝐴⟶V ∧ ∀𝑥 ∈ 𝐴 𝜓) → (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
8 | 7 | eximi 1798 | . . 3 ⊢ (∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
9 | 5, 8 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
10 | 2, 9 | sylbir 227 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∃wex 1743 ∈ wcel 2051 ∀wral 3081 ∃wrex 3082 Vcvv 3408 Fn wfn 6180 ⟶wf 6181 ‘cfv 6185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-reg 8849 ax-inf2 8896 ax-ac2 9681 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-iin 4791 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-om 7395 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-en 8305 df-r1 8985 df-rank 8986 df-card 9160 df-ac 9334 |
This theorem is referenced by: ac6s3 9705 ac6s4 9708 ptpconn 32102 ctbssinf 34165 |
Copyright terms: Public domain | W3C validator |