Step | Hyp | Ref
| Expression |
1 | | ptcmp.3 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2 | | rabexg 5250 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ∈
V) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ∈
V) |
4 | | ptcmp.1 |
. . . . 5
⊢ 𝑆 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
5 | | ptcmp.2 |
. . . . 5
⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) |
6 | | ptcmp.4 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶Comp) |
7 | | ptcmp.5 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom
card)) |
8 | | ptcmplem2.5 |
. . . . 5
⊢ (𝜑 → 𝑈 ⊆ ran 𝑆) |
9 | | ptcmplem2.6 |
. . . . 5
⊢ (𝜑 → 𝑋 = ∪ 𝑈) |
10 | | ptcmplem2.7 |
. . . . 5
⊢ (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) |
11 | 4, 5, 1, 6, 7, 8, 9, 10 | ptcmplem2 23112 |
. . . 4
⊢ (𝜑 → ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ dom card) |
12 | | eldifi 4057 |
. . . . . . . 8
⊢ (𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) → 𝑦 ∈ ∪ (𝐹‘𝑘)) |
13 | 12 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ V ∧ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → 𝑦 ∈ ∪ (𝐹‘𝑘)) |
14 | 13 | rabssdv 4004 |
. . . . . 6
⊢ (𝜑 → {𝑦 ∈ V ∣ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)} ⊆ ∪ (𝐹‘𝑘)) |
15 | 14 | ralrimivw 3108 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)} ⊆ ∪ (𝐹‘𝑘)) |
16 | | ss2iun 4939 |
. . . . 5
⊢
(∀𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)} ⊆ ∪ (𝐹‘𝑘) → ∪
𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)} ⊆ ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘)) |
17 | 15, 16 | syl 17 |
. . . 4
⊢ (𝜑 → ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)} ⊆ ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘)) |
18 | | ssnum 9726 |
. . . 4
⊢
((∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘) ∈ dom card ∧ ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)} ⊆ ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∪ (𝐹‘𝑘)) → ∪
𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)} ∈ dom
card) |
19 | 11, 17, 18 | syl2anc 583 |
. . 3
⊢ (𝜑 → ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)} ∈ dom
card) |
20 | | elrabi 3611 |
. . . . 5
⊢ (𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} → 𝑘 ∈ 𝐴) |
21 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) |
22 | | ssdif0 4294 |
. . . . . . . . 9
⊢ (∪ (𝐹‘𝑘) ⊆ ∪ 𝐾 ↔ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) = ∅) |
23 | 6 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ Comp) |
24 | 23 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) → (𝐹‘𝑘) ∈ Comp) |
25 | | ptcmplem3.8 |
. . . . . . . . . . . . . 14
⊢ 𝐾 = {𝑢 ∈ (𝐹‘𝑘) ∣ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑈} |
26 | 25 | ssrab3 4011 |
. . . . . . . . . . . . 13
⊢ 𝐾 ⊆ (𝐹‘𝑘) |
27 | 26 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) → 𝐾 ⊆ (𝐹‘𝑘)) |
28 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) → ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) |
29 | | uniss 4844 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ⊆ (𝐹‘𝑘) → ∪ 𝐾 ⊆ ∪ (𝐹‘𝑘)) |
30 | 26, 29 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) → ∪ 𝐾
⊆ ∪ (𝐹‘𝑘)) |
31 | 28, 30 | eqssd 3934 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) → ∪ (𝐹‘𝑘) = ∪ 𝐾) |
32 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝑘) |
33 | 32 | cmpcov 22448 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑘) ∈ Comp ∧ 𝐾 ⊆ (𝐹‘𝑘) ∧ ∪ (𝐹‘𝑘) = ∪ 𝐾) → ∃𝑡 ∈ (𝒫 𝐾 ∩ Fin)∪ (𝐹‘𝑘) = ∪ 𝑡) |
34 | 24, 27, 31, 33 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) → ∃𝑡 ∈ (𝒫 𝐾 ∩ Fin)∪ (𝐹‘𝑘) = ∪ 𝑡) |
35 | | elfpw 9051 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ↔ (𝑡 ⊆ 𝐾 ∧ 𝑡 ∈ Fin)) |
36 | 35 | simplbi 497 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) → 𝑡 ⊆ 𝐾) |
37 | 36 | ad2antrl 724 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → 𝑡 ⊆ 𝐾) |
38 | 37 | sselda 3917 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑥 ∈ 𝑡) → 𝑥 ∈ 𝐾) |
39 | | imaeq2 5954 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 = 𝑥 → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) |
40 | 39 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = 𝑥 → ((◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝑈 ↔ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) ∈ 𝑈)) |
41 | 40, 25 | elrab2 3620 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐾 ↔ (𝑥 ∈ (𝐹‘𝑘) ∧ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) ∈ 𝑈)) |
42 | 41 | simprbi 496 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐾 → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) ∈ 𝑈) |
43 | 38, 42 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑥 ∈ 𝑡) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) ∈ 𝑈) |
44 | 43 | fmpttd 6971 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)):𝑡⟶𝑈) |
45 | 44 | frnd 6592 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) ⊆ 𝑈) |
46 | 35 | simprbi 496 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) → 𝑡 ∈ Fin) |
47 | 46 | ad2antrl 724 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → 𝑡 ∈ Fin) |
48 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) = (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) |
49 | 48 | rnmpt 5853 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) = {𝑓 ∣ ∃𝑥 ∈ 𝑡 𝑓 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)} |
50 | | abrexfi 9049 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ Fin → {𝑓 ∣ ∃𝑥 ∈ 𝑡 𝑓 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)} ∈ Fin) |
51 | 49, 50 | eqeltrid 2843 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ Fin → ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) ∈ Fin) |
52 | 47, 51 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) ∈ Fin) |
53 | | elfpw 9051 |
. . . . . . . . . . . . 13
⊢ (ran
(𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) ∈ (𝒫 𝑈 ∩ Fin) ↔ (ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) ⊆ 𝑈 ∧ ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) ∈ Fin)) |
54 | 45, 52, 53 | sylanbrc 582 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) ∈ (𝒫 𝑈 ∩ Fin)) |
55 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑘 → (𝑓‘𝑛) = (𝑓‘𝑘)) |
56 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
57 | 56 | unieqd 4850 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑘 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑘)) |
58 | 55, 57 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑘 → ((𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛) ↔ (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
59 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ 𝑋) |
60 | 59, 5 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛)) |
61 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑓 ∈ V |
62 | 61 | elixp 8650 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 ∈ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛))) |
63 | 62 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) → ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛)) |
64 | 60, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑓 ∈ 𝑋) → ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛)) |
65 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑓 ∈ 𝑋) → 𝑘 ∈ 𝐴) |
66 | 58, 64, 65 | rspcdva 3554 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑓 ∈ 𝑋) → (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
67 | | simplrr 774 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑓 ∈ 𝑋) → ∪ (𝐹‘𝑘) = ∪ 𝑡) |
68 | 66, 67 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑓 ∈ 𝑋) → (𝑓‘𝑘) ∈ ∪ 𝑡) |
69 | | eluni2 4840 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑘) ∈ ∪ 𝑡 ↔ ∃𝑥 ∈ 𝑡 (𝑓‘𝑘) ∈ 𝑥) |
70 | 68, 69 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑓 ∈ 𝑋) → ∃𝑥 ∈ 𝑡 (𝑓‘𝑘) ∈ 𝑥) |
71 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑓 → (𝑤‘𝑘) = (𝑓‘𝑘)) |
72 | 71 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑓 → ((𝑤‘𝑘) ∈ 𝑥 ↔ (𝑓‘𝑘) ∈ 𝑥)) |
73 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) = (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) |
74 | 73 | mptpreima 6130 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) = {𝑤 ∈ 𝑋 ∣ (𝑤‘𝑘) ∈ 𝑥} |
75 | 72, 74 | elrab2 3620 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) ↔ (𝑓 ∈ 𝑋 ∧ (𝑓‘𝑘) ∈ 𝑥)) |
76 | 75 | baib 535 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ 𝑋 → (𝑓 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) ↔ (𝑓‘𝑘) ∈ 𝑥)) |
77 | 76 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑓 ∈ 𝑋) ∧ 𝑥 ∈ 𝑡) → (𝑓 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) ↔ (𝑓‘𝑘) ∈ 𝑥)) |
78 | 77 | rexbidva 3224 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑓 ∈ 𝑋) → (∃𝑥 ∈ 𝑡 𝑓 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) ↔ ∃𝑥 ∈ 𝑡 (𝑓‘𝑘) ∈ 𝑥)) |
79 | 70, 78 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑓 ∈ 𝑋) → ∃𝑥 ∈ 𝑡 𝑓 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) |
80 | | eliun 4925 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ ∪ 𝑥 ∈ 𝑡 (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) ↔ ∃𝑥 ∈ 𝑡 𝑓 ∈ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) |
81 | 79, 80 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ ∪
𝑥 ∈ 𝑡 (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) |
82 | 81 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → (𝑓 ∈ 𝑋 → 𝑓 ∈ ∪
𝑥 ∈ 𝑡 (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥))) |
83 | 82 | ssrdv 3923 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → 𝑋 ⊆ ∪
𝑥 ∈ 𝑡 (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) |
84 | 43 | ralrimiva 3107 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → ∀𝑥 ∈ 𝑡 (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) ∈ 𝑈) |
85 | | dfiun2g 4957 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑡 (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) ∈ 𝑈 → ∪
𝑥 ∈ 𝑡 (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) = ∪ {𝑓 ∣ ∃𝑥 ∈ 𝑡 𝑓 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)}) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → ∪ 𝑥 ∈ 𝑡 (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) = ∪ {𝑓 ∣ ∃𝑥 ∈ 𝑡 𝑓 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)}) |
87 | 49 | unieqi 4849 |
. . . . . . . . . . . . . . 15
⊢ ∪ ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) = ∪ {𝑓 ∣ ∃𝑥 ∈ 𝑡 𝑓 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)} |
88 | 86, 87 | eqtr4di 2797 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → ∪ 𝑥 ∈ 𝑡 (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥) = ∪ ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥))) |
89 | 83, 88 | sseqtrd 3957 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → 𝑋 ⊆ ∪ ran
(𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥))) |
90 | 45 | unissd 4846 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → ∪ ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) ⊆ ∪ 𝑈) |
91 | 9 | ad3antrrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → 𝑋 = ∪ 𝑈) |
92 | 90, 91 | sseqtrrd 3958 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → ∪ ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) ⊆ 𝑋) |
93 | 89, 92 | eqssd 3934 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → 𝑋 = ∪ ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥))) |
94 | | unieq 4847 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) → ∪ 𝑧 = ∪
ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥))) |
95 | 94 | rspceeqv 3567 |
. . . . . . . . . . . 12
⊢ ((ran
(𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥)) ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑋 = ∪ ran (𝑥 ∈ 𝑡 ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑥))) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) |
96 | 54, 93, 95 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ ∪ (𝐹‘𝑘) = ∪ 𝑡)) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) |
97 | 34, 96 | rexlimddv 3219 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ ∪ 𝐾) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) |
98 | 97 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (∪
(𝐹‘𝑘) ⊆ ∪ 𝐾 → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧)) |
99 | 22, 98 | syl5bir 242 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((∪
(𝐹‘𝑘) ∖ ∪ 𝐾) = ∅ → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧)) |
100 | 21, 99 | mtod 197 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾) = ∅) |
101 | | neq0 4276 |
. . . . . . 7
⊢ (¬
(∪ (𝐹‘𝑘) ∖ ∪ 𝐾) = ∅ ↔ ∃𝑦 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) |
102 | 100, 101 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∃𝑦 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) |
103 | | rexv 3447 |
. . . . . 6
⊢
(∃𝑦 ∈ V
𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) ↔ ∃𝑦 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) |
104 | 102, 103 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∃𝑦 ∈ V 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) |
105 | 20, 104 | sylan2 592 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}) → ∃𝑦 ∈ V 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) |
106 | 105 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∃𝑦 ∈ V 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) |
107 | | eleq1 2826 |
. . . 4
⊢ (𝑦 = (𝑔‘𝑘) → (𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) ↔ (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) |
108 | 107 | ac6num 10166 |
. . 3
⊢ (({𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} ∈ V ∧
∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)} ∈ dom card ∧
∀𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}∃𝑦 ∈ V 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → ∃𝑔(𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V ∧
∀𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) |
109 | 3, 19, 106, 108 | syl3anc 1369 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V ∧
∀𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) |
110 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V ∧
∀𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → 𝐴 ∈ 𝑉) |
111 | 110 | mptexd 7082 |
. . 3
⊢ ((𝜑 ∧ (𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V ∧
∀𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) ∈ V) |
112 | | fvex 6769 |
. . . . . . . 8
⊢ (𝐹‘𝑚) ∈ V |
113 | 112 | uniex 7572 |
. . . . . . 7
⊢ ∪ (𝐹‘𝑚) ∈ V |
114 | 113 | uniex 7572 |
. . . . . 6
⊢ ∪ ∪ (𝐹‘𝑚) ∈ V |
115 | | fvex 6769 |
. . . . . 6
⊢ (𝑔‘𝑚) ∈ V |
116 | 114, 115 | ifex 4506 |
. . . . 5
⊢ if(∪ (𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚)) ∈ V |
117 | 116 | rgenw 3075 |
. . . 4
⊢
∀𝑚 ∈
𝐴 if(∪ (𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚)) ∈ V |
118 | | eqid 2738 |
. . . . 5
⊢ (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) = (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) |
119 | 118 | fnmpt 6557 |
. . . 4
⊢
(∀𝑚 ∈
𝐴 if(∪ (𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚)) ∈ V → (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) Fn 𝐴) |
120 | 117, 119 | mp1i 13 |
. . 3
⊢ ((𝜑 ∧ (𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V ∧
∀𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) Fn 𝐴) |
121 | 57 | breq1d 5080 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (∪ (𝐹‘𝑛) ≈ 1o ↔ ∪ (𝐹‘𝑘) ≈ 1o)) |
122 | 121 | notbid 317 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (¬ ∪
(𝐹‘𝑛) ≈ 1o ↔ ¬ ∪ (𝐹‘𝑘) ≈ 1o)) |
123 | 122 | ralrab 3623 |
. . . . 5
⊢
(∀𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) ↔ ∀𝑘 ∈ 𝐴 (¬ ∪ (𝐹‘𝑘) ≈ 1o → (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) |
124 | | iftrue 4462 |
. . . . . . . . . . 11
⊢ (∪ (𝐹‘𝑘) ≈ 1o → if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) = ∪ ∪ (𝐹‘𝑘)) |
125 | 124 | ad2antll 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V) ∧
(𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) → if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) = ∪ ∪ (𝐹‘𝑘)) |
126 | 102 | adantrr 713 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) → ∃𝑦 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) |
127 | 12 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) ∧ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → 𝑦 ∈ ∪ (𝐹‘𝑘)) |
128 | | simplrr 774 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) ∧ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → ∪ (𝐹‘𝑘) ≈ 1o) |
129 | | en1b 8767 |
. . . . . . . . . . . . . . . 16
⊢ (∪ (𝐹‘𝑘) ≈ 1o ↔ ∪ (𝐹‘𝑘) = {∪ ∪ (𝐹‘𝑘)}) |
130 | 128, 129 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) ∧ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → ∪ (𝐹‘𝑘) = {∪ ∪ (𝐹‘𝑘)}) |
131 | 127, 130 | eleqtrd 2841 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) ∧ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → 𝑦 ∈ {∪ ∪ (𝐹‘𝑘)}) |
132 | | elsni 4575 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ {∪ ∪ (𝐹‘𝑘)} → 𝑦 = ∪ ∪ (𝐹‘𝑘)) |
133 | 131, 132 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) ∧ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → 𝑦 = ∪ ∪ (𝐹‘𝑘)) |
134 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) ∧ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) |
135 | 133, 134 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) ∧ 𝑦 ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → ∪ ∪ (𝐹‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) |
136 | 126, 135 | exlimddv 1939 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) → ∪ ∪ (𝐹‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) |
137 | 136 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V) ∧
(𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) → ∪ ∪ (𝐹‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) |
138 | 125, 137 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V) ∧
(𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) → if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾)) |
139 | 138 | a1d 25 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V) ∧
(𝑘 ∈ 𝐴 ∧ ∪ (𝐹‘𝑘) ≈ 1o)) → ((¬
∪ (𝐹‘𝑘) ≈ 1o → (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾))) |
140 | 139 | expr 456 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V) ∧
𝑘 ∈ 𝐴) → (∪
(𝐹‘𝑘) ≈ 1o → ((¬ ∪ (𝐹‘𝑘) ≈ 1o → (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾)))) |
141 | | pm2.27 42 |
. . . . . . . 8
⊢ (¬
∪ (𝐹‘𝑘) ≈ 1o → ((¬ ∪ (𝐹‘𝑘) ≈ 1o → (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) |
142 | | iffalse 4465 |
. . . . . . . . 9
⊢ (¬
∪ (𝐹‘𝑘) ≈ 1o → if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) = (𝑔‘𝑘)) |
143 | 142 | eleq1d 2823 |
. . . . . . . 8
⊢ (¬
∪ (𝐹‘𝑘) ≈ 1o → (if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾) ↔ (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) |
144 | 141, 143 | sylibrd 258 |
. . . . . . 7
⊢ (¬
∪ (𝐹‘𝑘) ≈ 1o → ((¬ ∪ (𝐹‘𝑘) ≈ 1o → (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾))) |
145 | 140, 144 | pm2.61d1 180 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V) ∧
𝑘 ∈ 𝐴) → ((¬ ∪ (𝐹‘𝑘) ≈ 1o → (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾))) |
146 | 145 | ralimdva 3102 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V) →
(∀𝑘 ∈ 𝐴 (¬ ∪ (𝐹‘𝑘) ≈ 1o → (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) → ∀𝑘 ∈ 𝐴 if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾))) |
147 | 123, 146 | syl5bi 241 |
. . . 4
⊢ ((𝜑 ∧ 𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V) →
(∀𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) → ∀𝑘 ∈ 𝐴 if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾))) |
148 | 147 | impr 454 |
. . 3
⊢ ((𝜑 ∧ (𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V ∧
∀𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → ∀𝑘 ∈ 𝐴 if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾)) |
149 | | fneq1 6508 |
. . . . . 6
⊢ (𝑓 = (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) → (𝑓 Fn 𝐴 ↔ (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) Fn 𝐴)) |
150 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑓 = (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) → (𝑓‘𝑘) = ((𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚)))‘𝑘)) |
151 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
152 | 151 | unieqd 4850 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → ∪ (𝐹‘𝑚) = ∪ (𝐹‘𝑘)) |
153 | 152 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → (∪ (𝐹‘𝑚) ≈ 1o ↔ ∪ (𝐹‘𝑘) ≈ 1o)) |
154 | 152 | unieqd 4850 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → ∪ ∪ (𝐹‘𝑚) = ∪ ∪ (𝐹‘𝑘)) |
155 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → (𝑔‘𝑚) = (𝑔‘𝑘)) |
156 | 153, 154,
155 | ifbieq12d 4484 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚)) = if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘))) |
157 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢ (𝐹‘𝑘) ∈ V |
158 | 157 | uniex 7572 |
. . . . . . . . . . . 12
⊢ ∪ (𝐹‘𝑘) ∈ V |
159 | 158 | uniex 7572 |
. . . . . . . . . . 11
⊢ ∪ ∪ (𝐹‘𝑘) ∈ V |
160 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝑔‘𝑘) ∈ V |
161 | 159, 160 | ifex 4506 |
. . . . . . . . . 10
⊢ if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ V |
162 | 156, 118,
161 | fvmpt 6857 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝐴 → ((𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚)))‘𝑘) = if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘))) |
163 | 150, 162 | sylan9eq 2799 |
. . . . . . . 8
⊢ ((𝑓 = (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) ∧ 𝑘 ∈ 𝐴) → (𝑓‘𝑘) = if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘))) |
164 | 163 | eleq1d 2823 |
. . . . . . 7
⊢ ((𝑓 = (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) ∧ 𝑘 ∈ 𝐴) → ((𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) ↔ if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾))) |
165 | 164 | ralbidva 3119 |
. . . . . 6
⊢ (𝑓 = (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) → (∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾) ↔ ∀𝑘 ∈ 𝐴 if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾))) |
166 | 149, 165 | anbi12d 630 |
. . . . 5
⊢ (𝑓 = (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) → ((𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)) ↔ ((𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾)))) |
167 | 166 | spcegv 3526 |
. . . 4
⊢ ((𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) ∈ V → (((𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾)))) |
168 | 167 | 3impib 1114 |
. . 3
⊢ (((𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) ∈ V ∧ (𝑚 ∈ 𝐴 ↦ if(∪
(𝐹‘𝑚) ≈ 1o, ∪ ∪ (𝐹‘𝑚), (𝑔‘𝑚))) Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 if(∪ (𝐹‘𝑘) ≈ 1o, ∪ ∪ (𝐹‘𝑘), (𝑔‘𝑘)) ∈ (∪
(𝐹‘𝑘) ∖ ∪ 𝐾)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) |
169 | 111, 120,
148, 168 | syl3anc 1369 |
. 2
⊢ ((𝜑 ∧ (𝑔:{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o}⟶V ∧
∀𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1o} (𝑔‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) |
170 | 109, 169 | exlimddv 1939 |
1
⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ (∪ (𝐹‘𝑘) ∖ ∪ 𝐾))) |