MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem3 Structured version   Visualization version   GIF version

Theorem ptcmplem3 23113
Description: Lemma for ptcmp 23117. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
ptcmplem2.5 (𝜑𝑈 ⊆ ran 𝑆)
ptcmplem2.6 (𝜑𝑋 = 𝑈)
ptcmplem2.7 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
ptcmplem3.8 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
Assertion
Ref Expression
ptcmplem3 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
Distinct variable groups:   𝑓,𝑘,𝑛,𝑢,𝑤,𝑧,𝐴   𝑓,𝐾,𝑢   𝑆,𝑘,𝑛,𝑢,𝑧   𝜑,𝑓,𝑘,𝑛,𝑢   𝑈,𝑘,𝑢,𝑧   𝑘,𝑉,𝑛,𝑢,𝑤,𝑧   𝑓,𝐹,𝑘,𝑛,𝑢,𝑤,𝑧   𝑓,𝑋,𝑘,𝑛,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑆(𝑤,𝑓)   𝑈(𝑤,𝑓,𝑛)   𝐾(𝑧,𝑤,𝑘,𝑛)   𝑉(𝑓)

Proof of Theorem ptcmplem3
Dummy variables 𝑔 𝑚 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.3 . . . 4 (𝜑𝐴𝑉)
2 rabexg 5250 . . . 4 (𝐴𝑉 → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V)
31, 2syl 17 . . 3 (𝜑 → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V)
4 ptcmp.1 . . . . 5 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
5 ptcmp.2 . . . . 5 𝑋 = X𝑛𝐴 (𝐹𝑛)
6 ptcmp.4 . . . . 5 (𝜑𝐹:𝐴⟶Comp)
7 ptcmp.5 . . . . 5 (𝜑𝑋 ∈ (UFL ∩ dom card))
8 ptcmplem2.5 . . . . 5 (𝜑𝑈 ⊆ ran 𝑆)
9 ptcmplem2.6 . . . . 5 (𝜑𝑋 = 𝑈)
10 ptcmplem2.7 . . . . 5 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
114, 5, 1, 6, 7, 8, 9, 10ptcmplem2 23112 . . . 4 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
12 eldifi 4057 . . . . . . . 8 (𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾) → 𝑦 (𝐹𝑘))
13123ad2ant3 1133 . . . . . . 7 ((𝜑𝑦 ∈ V ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 (𝐹𝑘))
1413rabssdv 4004 . . . . . 6 (𝜑 → {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ (𝐹𝑘))
1514ralrimivw 3108 . . . . 5 (𝜑 → ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ (𝐹𝑘))
16 ss2iun 4939 . . . . 5 (∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ (𝐹𝑘) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘))
1715, 16syl 17 . . . 4 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘))
18 ssnum 9726 . . . 4 (( 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘)) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ∈ dom card)
1911, 17, 18syl2anc 583 . . 3 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ∈ dom card)
20 elrabi 3611 . . . . 5 (𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} → 𝑘𝐴)
2110adantr 480 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
22 ssdif0 4294 . . . . . . . . 9 ( (𝐹𝑘) ⊆ 𝐾 ↔ ( (𝐹𝑘) ∖ 𝐾) = ∅)
236ffvelrnda 6943 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ Comp)
2423adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → (𝐹𝑘) ∈ Comp)
25 ptcmplem3.8 . . . . . . . . . . . . . 14 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
2625ssrab3 4011 . . . . . . . . . . . . 13 𝐾 ⊆ (𝐹𝑘)
2726a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → 𝐾 ⊆ (𝐹𝑘))
28 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → (𝐹𝑘) ⊆ 𝐾)
29 uniss 4844 . . . . . . . . . . . . . 14 (𝐾 ⊆ (𝐹𝑘) → 𝐾 (𝐹𝑘))
3026, 29mp1i 13 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → 𝐾 (𝐹𝑘))
3128, 30eqssd 3934 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → (𝐹𝑘) = 𝐾)
32 eqid 2738 . . . . . . . . . . . . 13 (𝐹𝑘) = (𝐹𝑘)
3332cmpcov 22448 . . . . . . . . . . . 12 (((𝐹𝑘) ∈ Comp ∧ 𝐾 ⊆ (𝐹𝑘) ∧ (𝐹𝑘) = 𝐾) → ∃𝑡 ∈ (𝒫 𝐾 ∩ Fin) (𝐹𝑘) = 𝑡)
3424, 27, 31, 33syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → ∃𝑡 ∈ (𝒫 𝐾 ∩ Fin) (𝐹𝑘) = 𝑡)
35 elfpw 9051 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ↔ (𝑡𝐾𝑡 ∈ Fin))
3635simplbi 497 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝒫 𝐾 ∩ Fin) → 𝑡𝐾)
3736ad2antrl 724 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑡𝐾)
3837sselda 3917 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑥𝑡) → 𝑥𝐾)
39 imaeq2 5954 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑥 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
4039eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑥 → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈))
4140, 25elrab2 3620 . . . . . . . . . . . . . . . . 17 (𝑥𝐾 ↔ (𝑥 ∈ (𝐹𝑘) ∧ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈))
4241simprbi 496 . . . . . . . . . . . . . . . 16 (𝑥𝐾 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈)
4338, 42syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑥𝑡) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈)
4443fmpttd 6971 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)):𝑡𝑈)
4544frnd 6592 . . . . . . . . . . . . 13 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑈)
4635simprbi 496 . . . . . . . . . . . . . . 15 (𝑡 ∈ (𝒫 𝐾 ∩ Fin) → 𝑡 ∈ Fin)
4746ad2antrl 724 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑡 ∈ Fin)
48 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) = (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
4948rnmpt 5853 . . . . . . . . . . . . . . 15 ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) = {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)}
50 abrexfi 9049 . . . . . . . . . . . . . . 15 (𝑡 ∈ Fin → {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)} ∈ Fin)
5149, 50eqeltrid 2843 . . . . . . . . . . . . . 14 (𝑡 ∈ Fin → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ Fin)
5247, 51syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ Fin)
53 elfpw 9051 . . . . . . . . . . . . 13 (ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ (𝒫 𝑈 ∩ Fin) ↔ (ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑈 ∧ ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ Fin))
5445, 52, 53sylanbrc 582 . . . . . . . . . . . 12 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ (𝒫 𝑈 ∩ Fin))
55 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
56 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
5756unieqd 4850 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
5855, 57eleq12d 2833 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝑓𝑛) ∈ (𝐹𝑛) ↔ (𝑓𝑘) ∈ (𝐹𝑘)))
59 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → 𝑓𝑋)
6059, 5eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → 𝑓X𝑛𝐴 (𝐹𝑛))
61 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓 ∈ V
6261elixp 8650 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓X𝑛𝐴 (𝐹𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛)))
6362simprbi 496 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓X𝑛𝐴 (𝐹𝑛) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
6460, 63syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
65 simp-4r 780 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → 𝑘𝐴)
6658, 64, 65rspcdva 3554 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → (𝑓𝑘) ∈ (𝐹𝑘))
67 simplrr 774 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → (𝐹𝑘) = 𝑡)
6866, 67eleqtrd 2841 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → (𝑓𝑘) ∈ 𝑡)
69 eluni2 4840 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑘) ∈ 𝑡 ↔ ∃𝑥𝑡 (𝑓𝑘) ∈ 𝑥)
7068, 69sylib 217 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → ∃𝑥𝑡 (𝑓𝑘) ∈ 𝑥)
71 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑓 → (𝑤𝑘) = (𝑓𝑘))
7271eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑓 → ((𝑤𝑘) ∈ 𝑥 ↔ (𝑓𝑘) ∈ 𝑥))
73 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘))
7473mptpreima 6130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) = {𝑤𝑋 ∣ (𝑤𝑘) ∈ 𝑥}
7572, 74elrab2 3620 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ (𝑓𝑋 ∧ (𝑓𝑘) ∈ 𝑥))
7675baib 535 . . . . . . . . . . . . . . . . . . . 20 (𝑓𝑋 → (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ (𝑓𝑘) ∈ 𝑥))
7776ad2antlr 723 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) ∧ 𝑥𝑡) → (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ (𝑓𝑘) ∈ 𝑥))
7877rexbidva 3224 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → (∃𝑥𝑡 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ ∃𝑥𝑡 (𝑓𝑘) ∈ 𝑥))
7970, 78mpbird 256 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → ∃𝑥𝑡 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
80 eliun 4925 . . . . . . . . . . . . . . . . 17 (𝑓 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ ∃𝑥𝑡 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
8179, 80sylibr 233 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → 𝑓 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
8281ex 412 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → (𝑓𝑋𝑓 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
8382ssrdv 3923 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑋 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
8443ralrimiva 3107 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ∀𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈)
85 dfiun2g 4957 . . . . . . . . . . . . . . . 16 (∀𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) = {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)})
8684, 85syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) = {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)})
8749unieqi 4849 . . . . . . . . . . . . . . 15 ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) = {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)}
8886, 87eqtr4di 2797 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
8983, 88sseqtrd 3957 . . . . . . . . . . . . 13 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑋 ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
9045unissd 4846 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑈)
919ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑋 = 𝑈)
9290, 91sseqtrrd 3958 . . . . . . . . . . . . 13 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑋)
9389, 92eqssd 3934 . . . . . . . . . . . 12 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑋 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
94 unieq 4847 . . . . . . . . . . . . 13 (𝑧 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) → 𝑧 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
9594rspceeqv 3567 . . . . . . . . . . . 12 ((ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑋 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
9654, 93, 95syl2anc 583 . . . . . . . . . . 11 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
9734, 96rexlimddv 3219 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
9897ex 412 . . . . . . . . 9 ((𝜑𝑘𝐴) → ( (𝐹𝑘) ⊆ 𝐾 → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧))
9922, 98syl5bir 242 . . . . . . . 8 ((𝜑𝑘𝐴) → (( (𝐹𝑘) ∖ 𝐾) = ∅ → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧))
10021, 99mtod 197 . . . . . . 7 ((𝜑𝑘𝐴) → ¬ ( (𝐹𝑘) ∖ 𝐾) = ∅)
101 neq0 4276 . . . . . . 7 (¬ ( (𝐹𝑘) ∖ 𝐾) = ∅ ↔ ∃𝑦 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
102100, 101sylib 217 . . . . . 6 ((𝜑𝑘𝐴) → ∃𝑦 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
103 rexv 3447 . . . . . 6 (∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ ∃𝑦 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
104102, 103sylibr 233 . . . . 5 ((𝜑𝑘𝐴) → ∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
10520, 104sylan2 592 . . . 4 ((𝜑𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}) → ∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
106105ralrimiva 3107 . . 3 (𝜑 → ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
107 eleq1 2826 . . . 4 (𝑦 = (𝑔𝑘) → (𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
108107ac6num 10166 . . 3 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ∈ dom card ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → ∃𝑔(𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
1093, 19, 106, 108syl3anc 1369 . 2 (𝜑 → ∃𝑔(𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
1101adantr 480 . . . 4 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝐴𝑉)
111110mptexd 7082 . . 3 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) ∈ V)
112 fvex 6769 . . . . . . . 8 (𝐹𝑚) ∈ V
113112uniex 7572 . . . . . . 7 (𝐹𝑚) ∈ V
114113uniex 7572 . . . . . 6 (𝐹𝑚) ∈ V
115 fvex 6769 . . . . . 6 (𝑔𝑚) ∈ V
116114, 115ifex 4506 . . . . 5 if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)) ∈ V
117116rgenw 3075 . . . 4 𝑚𝐴 if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)) ∈ V
118 eqid 2738 . . . . 5 (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)))
119118fnmpt 6557 . . . 4 (∀𝑚𝐴 if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)) ∈ V → (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴)
120117, 119mp1i 13 . . 3 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴)
12157breq1d 5080 . . . . . . 7 (𝑛 = 𝑘 → ( (𝐹𝑛) ≈ 1o (𝐹𝑘) ≈ 1o))
122121notbid 317 . . . . . 6 (𝑛 = 𝑘 → (¬ (𝐹𝑛) ≈ 1o ↔ ¬ (𝐹𝑘) ≈ 1o))
123122ralrab 3623 . . . . 5 (∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ ∀𝑘𝐴 (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
124 iftrue 4462 . . . . . . . . . . 11 ( (𝐹𝑘) ≈ 1o → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) = (𝐹𝑘))
125124ad2antll 725 . . . . . . . . . 10 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) = (𝐹𝑘))
126102adantrr 713 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) → ∃𝑦 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
12712adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 (𝐹𝑘))
128 simplrr 774 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → (𝐹𝑘) ≈ 1o)
129 en1b 8767 . . . . . . . . . . . . . . . 16 ( (𝐹𝑘) ≈ 1o (𝐹𝑘) = { (𝐹𝑘)})
130128, 129sylib 217 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → (𝐹𝑘) = { (𝐹𝑘)})
131127, 130eleqtrd 2841 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 ∈ { (𝐹𝑘)})
132 elsni 4575 . . . . . . . . . . . . . 14 (𝑦 ∈ { (𝐹𝑘)} → 𝑦 = (𝐹𝑘))
133131, 132syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 = (𝐹𝑘))
134 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
135133, 134eqeltrrd 2840 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → (𝐹𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))
136126, 135exlimddv 1939 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) → (𝐹𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))
137136adantlr 711 . . . . . . . . . 10 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) → (𝐹𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))
138125, 137eqeltrd 2839 . . . . . . . . 9 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾))
139138a1d 25 . . . . . . . 8 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) → ((¬ (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
140139expr 456 . . . . . . 7 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) ∧ 𝑘𝐴) → ( (𝐹𝑘) ≈ 1o → ((¬ (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾))))
141 pm2.27 42 . . . . . . . 8 (𝐹𝑘) ≈ 1o → ((¬ (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
142 iffalse 4465 . . . . . . . . 9 (𝐹𝑘) ≈ 1o → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) = (𝑔𝑘))
143142eleq1d 2823 . . . . . . . 8 (𝐹𝑘) ≈ 1o → (if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
144141, 143sylibrd 258 . . . . . . 7 (𝐹𝑘) ≈ 1o → ((¬ (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
145140, 144pm2.61d1 180 . . . . . 6 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) ∧ 𝑘𝐴) → ((¬ (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
146145ralimdva 3102 . . . . 5 ((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) → (∀𝑘𝐴 (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
147123, 146syl5bi 241 . . . 4 ((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) → (∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
148147impr 454 . . 3 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾))
149 fneq1 6508 . . . . . 6 (𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) → (𝑓 Fn 𝐴 ↔ (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴))
150 fveq1 6755 . . . . . . . . 9 (𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) → (𝑓𝑘) = ((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)))‘𝑘))
151 fveq2 6756 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
152151unieqd 4850 . . . . . . . . . . . 12 (𝑚 = 𝑘 (𝐹𝑚) = (𝐹𝑘))
153152breq1d 5080 . . . . . . . . . . 11 (𝑚 = 𝑘 → ( (𝐹𝑚) ≈ 1o (𝐹𝑘) ≈ 1o))
154152unieqd 4850 . . . . . . . . . . 11 (𝑚 = 𝑘 (𝐹𝑚) = (𝐹𝑘))
155 fveq2 6756 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑔𝑚) = (𝑔𝑘))
156153, 154, 155ifbieq12d 4484 . . . . . . . . . 10 (𝑚 = 𝑘 → if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)) = if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)))
157 fvex 6769 . . . . . . . . . . . . 13 (𝐹𝑘) ∈ V
158157uniex 7572 . . . . . . . . . . . 12 (𝐹𝑘) ∈ V
159158uniex 7572 . . . . . . . . . . 11 (𝐹𝑘) ∈ V
160 fvex 6769 . . . . . . . . . . 11 (𝑔𝑘) ∈ V
161159, 160ifex 4506 . . . . . . . . . 10 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ V
162156, 118, 161fvmpt 6857 . . . . . . . . 9 (𝑘𝐴 → ((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)))‘𝑘) = if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)))
163150, 162sylan9eq 2799 . . . . . . . 8 ((𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) ∧ 𝑘𝐴) → (𝑓𝑘) = if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)))
164163eleq1d 2823 . . . . . . 7 ((𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) ∧ 𝑘𝐴) → ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
165164ralbidva 3119 . . . . . 6 (𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
166149, 165anbi12d 630 . . . . 5 (𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) → ((𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) ↔ ((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴 ∧ ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾))))
167166spcegv 3526 . . . 4 ((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) ∈ V → (((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴 ∧ ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))))
1681673impib 1114 . . 3 (((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) ∈ V ∧ (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴 ∧ ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
169111, 120, 148, 168syl3anc 1369 . 2 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
170109, 169exlimddv 1939 1 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cin 3882  wss 3883  c0 4253  ifcif 4456  𝒫 cpw 4530  {csn 4558   cuni 4836   ciun 4921   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  cmpo 7257  1oc1o 8260  Xcixp 8643  cen 8688  Fincfn 8691  cardccrd 9624  Compccmp 22445  UFLcufl 22959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-fin 8695  df-wdom 9254  df-card 9628  df-acn 9631  df-cmp 22446
This theorem is referenced by:  ptcmplem4  23114
  Copyright terms: Public domain W3C validator