MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem3 Structured version   Visualization version   GIF version

Theorem ptcmplem3 24077
Description: Lemma for ptcmp 24081. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
ptcmplem2.5 (𝜑𝑈 ⊆ ran 𝑆)
ptcmplem2.6 (𝜑𝑋 = 𝑈)
ptcmplem2.7 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
ptcmplem3.8 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
Assertion
Ref Expression
ptcmplem3 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
Distinct variable groups:   𝑓,𝑘,𝑛,𝑢,𝑤,𝑧,𝐴   𝑓,𝐾,𝑢   𝑆,𝑘,𝑛,𝑢,𝑧   𝜑,𝑓,𝑘,𝑛,𝑢   𝑈,𝑘,𝑢,𝑧   𝑘,𝑉,𝑛,𝑢,𝑤,𝑧   𝑓,𝐹,𝑘,𝑛,𝑢,𝑤,𝑧   𝑓,𝑋,𝑘,𝑛,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑆(𝑤,𝑓)   𝑈(𝑤,𝑓,𝑛)   𝐾(𝑧,𝑤,𝑘,𝑛)   𝑉(𝑓)

Proof of Theorem ptcmplem3
Dummy variables 𝑔 𝑚 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.3 . . . 4 (𝜑𝐴𝑉)
2 rabexg 5342 . . . 4 (𝐴𝑉 → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V)
31, 2syl 17 . . 3 (𝜑 → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V)
4 ptcmp.1 . . . . 5 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
5 ptcmp.2 . . . . 5 𝑋 = X𝑛𝐴 (𝐹𝑛)
6 ptcmp.4 . . . . 5 (𝜑𝐹:𝐴⟶Comp)
7 ptcmp.5 . . . . 5 (𝜑𝑋 ∈ (UFL ∩ dom card))
8 ptcmplem2.5 . . . . 5 (𝜑𝑈 ⊆ ran 𝑆)
9 ptcmplem2.6 . . . . 5 (𝜑𝑋 = 𝑈)
10 ptcmplem2.7 . . . . 5 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
114, 5, 1, 6, 7, 8, 9, 10ptcmplem2 24076 . . . 4 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card)
12 eldifi 4140 . . . . . . . 8 (𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾) → 𝑦 (𝐹𝑘))
13123ad2ant3 1134 . . . . . . 7 ((𝜑𝑦 ∈ V ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 (𝐹𝑘))
1413rabssdv 4084 . . . . . 6 (𝜑 → {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ (𝐹𝑘))
1514ralrimivw 3147 . . . . 5 (𝜑 → ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ (𝐹𝑘))
16 ss2iun 5014 . . . . 5 (∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ (𝐹𝑘) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘))
1715, 16syl 17 . . . 4 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘))
18 ssnum 10076 . . . 4 (( 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘) ∈ dom card ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝐹𝑘)) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ∈ dom card)
1911, 17, 18syl2anc 584 . . 3 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ∈ dom card)
20 elrabi 3689 . . . . 5 (𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} → 𝑘𝐴)
2110adantr 480 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
22 ssdif0 4371 . . . . . . . . 9 ( (𝐹𝑘) ⊆ 𝐾 ↔ ( (𝐹𝑘) ∖ 𝐾) = ∅)
236ffvelcdmda 7103 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ Comp)
2423adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → (𝐹𝑘) ∈ Comp)
25 ptcmplem3.8 . . . . . . . . . . . . . 14 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
2625ssrab3 4091 . . . . . . . . . . . . 13 𝐾 ⊆ (𝐹𝑘)
2726a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → 𝐾 ⊆ (𝐹𝑘))
28 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → (𝐹𝑘) ⊆ 𝐾)
29 uniss 4919 . . . . . . . . . . . . . 14 (𝐾 ⊆ (𝐹𝑘) → 𝐾 (𝐹𝑘))
3026, 29mp1i 13 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → 𝐾 (𝐹𝑘))
3128, 30eqssd 4012 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → (𝐹𝑘) = 𝐾)
32 eqid 2734 . . . . . . . . . . . . 13 (𝐹𝑘) = (𝐹𝑘)
3332cmpcov 23412 . . . . . . . . . . . 12 (((𝐹𝑘) ∈ Comp ∧ 𝐾 ⊆ (𝐹𝑘) ∧ (𝐹𝑘) = 𝐾) → ∃𝑡 ∈ (𝒫 𝐾 ∩ Fin) (𝐹𝑘) = 𝑡)
3424, 27, 31, 33syl3anc 1370 . . . . . . . . . . 11 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → ∃𝑡 ∈ (𝒫 𝐾 ∩ Fin) (𝐹𝑘) = 𝑡)
35 elfpw 9391 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ↔ (𝑡𝐾𝑡 ∈ Fin))
3635simplbi 497 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝒫 𝐾 ∩ Fin) → 𝑡𝐾)
3736ad2antrl 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑡𝐾)
3837sselda 3994 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑥𝑡) → 𝑥𝐾)
39 imaeq2 6075 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑥 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
4039eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑥 → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈))
4140, 25elrab2 3697 . . . . . . . . . . . . . . . . 17 (𝑥𝐾 ↔ (𝑥 ∈ (𝐹𝑘) ∧ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈))
4241simprbi 496 . . . . . . . . . . . . . . . 16 (𝑥𝐾 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈)
4338, 42syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑥𝑡) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈)
4443fmpttd 7134 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)):𝑡𝑈)
4544frnd 6744 . . . . . . . . . . . . 13 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑈)
4635simprbi 496 . . . . . . . . . . . . . . 15 (𝑡 ∈ (𝒫 𝐾 ∩ Fin) → 𝑡 ∈ Fin)
4746ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑡 ∈ Fin)
48 eqid 2734 . . . . . . . . . . . . . . . 16 (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) = (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
4948rnmpt 5970 . . . . . . . . . . . . . . 15 ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) = {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)}
50 abrexfi 9389 . . . . . . . . . . . . . . 15 (𝑡 ∈ Fin → {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)} ∈ Fin)
5149, 50eqeltrid 2842 . . . . . . . . . . . . . 14 (𝑡 ∈ Fin → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ Fin)
5247, 51syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ Fin)
53 elfpw 9391 . . . . . . . . . . . . 13 (ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ (𝒫 𝑈 ∩ Fin) ↔ (ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑈 ∧ ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ Fin))
5445, 52, 53sylanbrc 583 . . . . . . . . . . . 12 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ (𝒫 𝑈 ∩ Fin))
55 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
56 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
5756unieqd 4924 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
5855, 57eleq12d 2832 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝑓𝑛) ∈ (𝐹𝑛) ↔ (𝑓𝑘) ∈ (𝐹𝑘)))
59 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → 𝑓𝑋)
6059, 5eleqtrdi 2848 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → 𝑓X𝑛𝐴 (𝐹𝑛))
61 vex 3481 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓 ∈ V
6261elixp 8942 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓X𝑛𝐴 (𝐹𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛)))
6362simprbi 496 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓X𝑛𝐴 (𝐹𝑛) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
6460, 63syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
65 simp-4r 784 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → 𝑘𝐴)
6658, 64, 65rspcdva 3622 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → (𝑓𝑘) ∈ (𝐹𝑘))
67 simplrr 778 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → (𝐹𝑘) = 𝑡)
6866, 67eleqtrd 2840 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → (𝑓𝑘) ∈ 𝑡)
69 eluni2 4915 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑘) ∈ 𝑡 ↔ ∃𝑥𝑡 (𝑓𝑘) ∈ 𝑥)
7068, 69sylib 218 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → ∃𝑥𝑡 (𝑓𝑘) ∈ 𝑥)
71 fveq1 6905 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑓 → (𝑤𝑘) = (𝑓𝑘))
7271eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑓 → ((𝑤𝑘) ∈ 𝑥 ↔ (𝑓𝑘) ∈ 𝑥))
73 eqid 2734 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘))
7473mptpreima 6259 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) = {𝑤𝑋 ∣ (𝑤𝑘) ∈ 𝑥}
7572, 74elrab2 3697 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ (𝑓𝑋 ∧ (𝑓𝑘) ∈ 𝑥))
7675baib 535 . . . . . . . . . . . . . . . . . . . 20 (𝑓𝑋 → (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ (𝑓𝑘) ∈ 𝑥))
7776ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) ∧ 𝑥𝑡) → (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ (𝑓𝑘) ∈ 𝑥))
7877rexbidva 3174 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → (∃𝑥𝑡 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ ∃𝑥𝑡 (𝑓𝑘) ∈ 𝑥))
7970, 78mpbird 257 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → ∃𝑥𝑡 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
80 eliun 4999 . . . . . . . . . . . . . . . . 17 (𝑓 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ ∃𝑥𝑡 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
8179, 80sylibr 234 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → 𝑓 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
8281ex 412 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → (𝑓𝑋𝑓 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
8382ssrdv 4000 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑋 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
8443ralrimiva 3143 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ∀𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈)
85 dfiun2g 5034 . . . . . . . . . . . . . . . 16 (∀𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) = {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)})
8684, 85syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) = {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)})
8749unieqi 4923 . . . . . . . . . . . . . . 15 ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) = {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)}
8886, 87eqtr4di 2792 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
8983, 88sseqtrd 4035 . . . . . . . . . . . . 13 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑋 ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
9045unissd 4921 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑈)
919ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑋 = 𝑈)
9290, 91sseqtrrd 4036 . . . . . . . . . . . . 13 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑋)
9389, 92eqssd 4012 . . . . . . . . . . . 12 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑋 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
94 unieq 4922 . . . . . . . . . . . . 13 (𝑧 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) → 𝑧 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
9594rspceeqv 3644 . . . . . . . . . . . 12 ((ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑋 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
9654, 93, 95syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
9734, 96rexlimddv 3158 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
9897ex 412 . . . . . . . . 9 ((𝜑𝑘𝐴) → ( (𝐹𝑘) ⊆ 𝐾 → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧))
9922, 98biimtrrid 243 . . . . . . . 8 ((𝜑𝑘𝐴) → (( (𝐹𝑘) ∖ 𝐾) = ∅ → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧))
10021, 99mtod 198 . . . . . . 7 ((𝜑𝑘𝐴) → ¬ ( (𝐹𝑘) ∖ 𝐾) = ∅)
101 neq0 4357 . . . . . . 7 (¬ ( (𝐹𝑘) ∖ 𝐾) = ∅ ↔ ∃𝑦 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
102100, 101sylib 218 . . . . . 6 ((𝜑𝑘𝐴) → ∃𝑦 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
103 rexv 3506 . . . . . 6 (∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ ∃𝑦 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
104102, 103sylibr 234 . . . . 5 ((𝜑𝑘𝐴) → ∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
10520, 104sylan2 593 . . . 4 ((𝜑𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}) → ∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
106105ralrimiva 3143 . . 3 (𝜑 → ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
107 eleq1 2826 . . . 4 (𝑦 = (𝑔𝑘) → (𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
108107ac6num 10516 . . 3 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} ∈ V ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ∈ dom card ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → ∃𝑔(𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
1093, 19, 106, 108syl3anc 1370 . 2 (𝜑 → ∃𝑔(𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
1101adantr 480 . . . 4 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝐴𝑉)
111110mptexd 7243 . . 3 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) ∈ V)
112 fvex 6919 . . . . . . . 8 (𝐹𝑚) ∈ V
113112uniex 7759 . . . . . . 7 (𝐹𝑚) ∈ V
114113uniex 7759 . . . . . 6 (𝐹𝑚) ∈ V
115 fvex 6919 . . . . . 6 (𝑔𝑚) ∈ V
116114, 115ifex 4580 . . . . 5 if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)) ∈ V
117116rgenw 3062 . . . 4 𝑚𝐴 if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)) ∈ V
118 eqid 2734 . . . . 5 (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)))
119118fnmpt 6708 . . . 4 (∀𝑚𝐴 if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)) ∈ V → (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴)
120117, 119mp1i 13 . . 3 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴)
12157breq1d 5157 . . . . . . 7 (𝑛 = 𝑘 → ( (𝐹𝑛) ≈ 1o (𝐹𝑘) ≈ 1o))
122121notbid 318 . . . . . 6 (𝑛 = 𝑘 → (¬ (𝐹𝑛) ≈ 1o ↔ ¬ (𝐹𝑘) ≈ 1o))
123122ralrab 3701 . . . . 5 (∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ ∀𝑘𝐴 (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
124 iftrue 4536 . . . . . . . . . . 11 ( (𝐹𝑘) ≈ 1o → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) = (𝐹𝑘))
125124ad2antll 729 . . . . . . . . . 10 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) = (𝐹𝑘))
126102adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) → ∃𝑦 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
12712adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 (𝐹𝑘))
128 simplrr 778 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → (𝐹𝑘) ≈ 1o)
129 en1b 9063 . . . . . . . . . . . . . . . 16 ( (𝐹𝑘) ≈ 1o (𝐹𝑘) = { (𝐹𝑘)})
130128, 129sylib 218 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → (𝐹𝑘) = { (𝐹𝑘)})
131127, 130eleqtrd 2840 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 ∈ { (𝐹𝑘)})
132 elsni 4647 . . . . . . . . . . . . . 14 (𝑦 ∈ { (𝐹𝑘)} → 𝑦 = (𝐹𝑘))
133131, 132syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 = (𝐹𝑘))
134 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
135133, 134eqeltrrd 2839 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → (𝐹𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))
136126, 135exlimddv 1932 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) → (𝐹𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))
137136adantlr 715 . . . . . . . . . 10 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) → (𝐹𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))
138125, 137eqeltrd 2838 . . . . . . . . 9 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾))
139138a1d 25 . . . . . . . 8 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1o)) → ((¬ (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
140139expr 456 . . . . . . 7 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) ∧ 𝑘𝐴) → ( (𝐹𝑘) ≈ 1o → ((¬ (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾))))
141 pm2.27 42 . . . . . . . 8 (𝐹𝑘) ≈ 1o → ((¬ (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
142 iffalse 4539 . . . . . . . . 9 (𝐹𝑘) ≈ 1o → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) = (𝑔𝑘))
143142eleq1d 2823 . . . . . . . 8 (𝐹𝑘) ≈ 1o → (if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
144141, 143sylibrd 259 . . . . . . 7 (𝐹𝑘) ≈ 1o → ((¬ (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
145140, 144pm2.61d1 180 . . . . . 6 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) ∧ 𝑘𝐴) → ((¬ (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
146145ralimdva 3164 . . . . 5 ((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) → (∀𝑘𝐴 (𝐹𝑘) ≈ 1o → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
147123, 146biimtrid 242 . . . 4 ((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V) → (∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
148147impr 454 . . 3 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾))
149 fneq1 6659 . . . . . 6 (𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) → (𝑓 Fn 𝐴 ↔ (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴))
150 fveq1 6905 . . . . . . . . 9 (𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) → (𝑓𝑘) = ((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)))‘𝑘))
151 fveq2 6906 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
152151unieqd 4924 . . . . . . . . . . . 12 (𝑚 = 𝑘 (𝐹𝑚) = (𝐹𝑘))
153152breq1d 5157 . . . . . . . . . . 11 (𝑚 = 𝑘 → ( (𝐹𝑚) ≈ 1o (𝐹𝑘) ≈ 1o))
154152unieqd 4924 . . . . . . . . . . 11 (𝑚 = 𝑘 (𝐹𝑚) = (𝐹𝑘))
155 fveq2 6906 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑔𝑚) = (𝑔𝑘))
156153, 154, 155ifbieq12d 4558 . . . . . . . . . 10 (𝑚 = 𝑘 → if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)) = if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)))
157 fvex 6919 . . . . . . . . . . . . 13 (𝐹𝑘) ∈ V
158157uniex 7759 . . . . . . . . . . . 12 (𝐹𝑘) ∈ V
159158uniex 7759 . . . . . . . . . . 11 (𝐹𝑘) ∈ V
160 fvex 6919 . . . . . . . . . . 11 (𝑔𝑘) ∈ V
161159, 160ifex 4580 . . . . . . . . . 10 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ V
162156, 118, 161fvmpt 7015 . . . . . . . . 9 (𝑘𝐴 → ((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚)))‘𝑘) = if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)))
163150, 162sylan9eq 2794 . . . . . . . 8 ((𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) ∧ 𝑘𝐴) → (𝑓𝑘) = if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)))
164163eleq1d 2823 . . . . . . 7 ((𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) ∧ 𝑘𝐴) → ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
165164ralbidva 3173 . . . . . 6 (𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
166149, 165anbi12d 632 . . . . 5 (𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) → ((𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) ↔ ((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴 ∧ ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾))))
167166spcegv 3596 . . . 4 ((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) ∈ V → (((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴 ∧ ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))))
1681673impib 1115 . . 3 (((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) ∈ V ∧ (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1o, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴 ∧ ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1o, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
169111, 120, 148, 168syl3anc 1370 . 2 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1o} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
170109, 169exlimddv 1932 1 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wex 1775  wcel 2105  {cab 2711  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  cdif 3959  cin 3961  wss 3962  c0 4338  ifcif 4530  𝒫 cpw 4604  {csn 4630   cuni 4911   ciun 4995   class class class wbr 5147  cmpt 5230  ccnv 5687  dom cdm 5688  ran crn 5689  cima 5691   Fn wfn 6557  wf 6558  cfv 6562  cmpo 7432  1oc1o 8497  Xcixp 8935  cen 8980  Fincfn 8983  cardccrd 9972  Compccmp 23409  UFLcufl 23923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-fin 8987  df-wdom 9602  df-card 9976  df-acn 9979  df-cmp 23410
This theorem is referenced by:  ptcmplem4  24078
  Copyright terms: Public domain W3C validator