MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfco2a Structured version   Visualization version   GIF version

Theorem dfco2a 6149
Description: Generalization of dfco2 6148, where 𝐶 can have any value between dom 𝐴 ∩ ran 𝐵 and V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfco2a ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴𝐵) = 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem dfco2a
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfco2 6148 . 2 (𝐴𝐵) = 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
2 vex 3435 . . . . . . . . . . . . . . 15 𝑧 ∈ V
32eliniseg 6001 . . . . . . . . . . . . . 14 (𝑥 ∈ V → (𝑧 ∈ (𝐵 “ {𝑥}) ↔ 𝑧𝐵𝑥))
43elv 3437 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐵 “ {𝑥}) ↔ 𝑧𝐵𝑥)
5 vex 3435 . . . . . . . . . . . . . 14 𝑥 ∈ V
62, 5brelrn 5850 . . . . . . . . . . . . 13 (𝑧𝐵𝑥𝑥 ∈ ran 𝐵)
74, 6sylbi 216 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵 “ {𝑥}) → 𝑥 ∈ ran 𝐵)
8 vex 3435 . . . . . . . . . . . . . 14 𝑤 ∈ V
95, 8elimasn 5996 . . . . . . . . . . . . 13 (𝑤 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑤⟩ ∈ 𝐴)
105, 8opeldm 5815 . . . . . . . . . . . . 13 (⟨𝑥, 𝑤⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
119, 10sylbi 216 . . . . . . . . . . . 12 (𝑤 ∈ (𝐴 “ {𝑥}) → 𝑥 ∈ dom 𝐴)
127, 11anim12ci 614 . . . . . . . . . . 11 ((𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥})) → (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
1312adantl 482 . . . . . . . . . 10 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))) → (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
1413exlimivv 1939 . . . . . . . . 9 (∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))) → (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
15 elxp 5613 . . . . . . . . 9 (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))))
16 elin 3908 . . . . . . . . 9 (𝑥 ∈ (dom 𝐴 ∩ ran 𝐵) ↔ (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
1714, 15, 163imtr4i 292 . . . . . . . 8 (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) → 𝑥 ∈ (dom 𝐴 ∩ ran 𝐵))
18 ssel 3919 . . . . . . . 8 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑥 ∈ (dom 𝐴 ∩ ran 𝐵) → 𝑥𝐶))
1917, 18syl5 34 . . . . . . 7 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) → 𝑥𝐶))
2019pm4.71rd 563 . . . . . 6 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (𝑥𝐶𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))))
2120exbidv 1928 . . . . 5 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (∃𝑥 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(𝑥𝐶𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))))
22 rexv 3456 . . . . 5 (∃𝑥 ∈ V 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
23 df-rex 3072 . . . . 5 (∃𝑥𝐶 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(𝑥𝐶𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))
2421, 22, 233bitr4g 314 . . . 4 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (∃𝑥 ∈ V 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥𝐶 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))
25 eliun 4934 . . . 4 (𝑦 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 ∈ V 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
26 eliun 4934 . . . 4 (𝑦 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥𝐶 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
2724, 25, 263bitr4g 314 . . 3 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ 𝑦 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))
2827eqrdv 2738 . 2 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) = 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
291, 28eqtrid 2792 1 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴𝐵) = 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wex 1786  wcel 2110  wrex 3067  Vcvv 3431  cin 3891  wss 3892  {csn 4567  cop 4573   ciun 4930   class class class wbr 5079   × cxp 5588  ccnv 5589  dom cdm 5590  ran crn 5591  cima 5593  ccom 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-iun 4932  df-br 5080  df-opab 5142  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603
This theorem is referenced by:  fparlem3  7945  fparlem4  7946
  Copyright terms: Public domain W3C validator