MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfco2a Structured version   Visualization version   GIF version

Theorem dfco2a 5856
Description: Generalization of dfco2 5855, where 𝐶 can have any value between dom 𝐴 ∩ ran 𝐵 and V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfco2a ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴𝐵) = 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem dfco2a
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfco2 5855 . 2 (𝐴𝐵) = 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
2 vex 3401 . . . . . . . . . . . . . 14 𝑥 ∈ V
3 vex 3401 . . . . . . . . . . . . . . 15 𝑧 ∈ V
43eliniseg 5711 . . . . . . . . . . . . . 14 (𝑥 ∈ V → (𝑧 ∈ (𝐵 “ {𝑥}) ↔ 𝑧𝐵𝑥))
52, 4ax-mp 5 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐵 “ {𝑥}) ↔ 𝑧𝐵𝑥)
63, 2brelrn 5564 . . . . . . . . . . . . 13 (𝑧𝐵𝑥𝑥 ∈ ran 𝐵)
75, 6sylbi 208 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵 “ {𝑥}) → 𝑥 ∈ ran 𝐵)
8 vex 3401 . . . . . . . . . . . . . 14 𝑤 ∈ V
92, 8elimasn 5707 . . . . . . . . . . . . 13 (𝑤 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑤⟩ ∈ 𝐴)
102, 8opeldm 5536 . . . . . . . . . . . . 13 (⟨𝑥, 𝑤⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
119, 10sylbi 208 . . . . . . . . . . . 12 (𝑤 ∈ (𝐴 “ {𝑥}) → 𝑥 ∈ dom 𝐴)
127, 11anim12ci 603 . . . . . . . . . . 11 ((𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥})) → (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
1312adantl 469 . . . . . . . . . 10 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))) → (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
1413exlimivv 2023 . . . . . . . . 9 (∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))) → (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
15 elxp 5340 . . . . . . . . 9 (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))))
16 elin 4002 . . . . . . . . 9 (𝑥 ∈ (dom 𝐴 ∩ ran 𝐵) ↔ (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
1714, 15, 163imtr4i 283 . . . . . . . 8 (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) → 𝑥 ∈ (dom 𝐴 ∩ ran 𝐵))
18 ssel 3799 . . . . . . . 8 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑥 ∈ (dom 𝐴 ∩ ran 𝐵) → 𝑥𝐶))
1917, 18syl5 34 . . . . . . 7 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) → 𝑥𝐶))
2019pm4.71rd 554 . . . . . 6 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (𝑥𝐶𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))))
2120exbidv 2012 . . . . 5 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (∃𝑥 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(𝑥𝐶𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))))
22 rexv 3421 . . . . 5 (∃𝑥 ∈ V 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
23 df-rex 3109 . . . . 5 (∃𝑥𝐶 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(𝑥𝐶𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))
2421, 22, 233bitr4g 305 . . . 4 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (∃𝑥 ∈ V 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥𝐶 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))
25 eliun 4723 . . . 4 (𝑦 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 ∈ V 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
26 eliun 4723 . . . 4 (𝑦 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥𝐶 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
2724, 25, 263bitr4g 305 . . 3 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ 𝑦 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))
2827eqrdv 2811 . 2 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) = 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
291, 28syl5eq 2859 1 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴𝐵) = 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wex 1859  wcel 2157  wrex 3104  Vcvv 3398  cin 3775  wss 3776  {csn 4377  cop 4383   ciun 4719   class class class wbr 4851   × cxp 5316  ccnv 5317  dom cdm 5318  ran crn 5319  cima 5321  ccom 5322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pr 5103
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3400  df-sbc 3641  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-iun 4721  df-br 4852  df-opab 4914  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331
This theorem is referenced by:  fparlem3  7516  fparlem4  7517
  Copyright terms: Public domain W3C validator