|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rimrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| rimrcl | ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rim 20473 | . 2 ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) | |
| 2 | 1 | elmpocl 7674 | 1 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {crab 3436 Vcvv 3480 ◡ccnv 5684 (class class class)co 7431 RingHom crh 20469 RingIso crs 20470 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-dm 5695 df-iota 6514 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-rim 20473 | 
| This theorem is referenced by: isrim0 20483 rimisrngim 20498 | 
| Copyright terms: Public domain | W3C validator |