MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrim0 Structured version   Visualization version   GIF version

Theorem isrim0 20509
Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 19305. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.)
Assertion
Ref Expression
isrim0 (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))

Proof of Theorem isrim0
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rimrcl 20508 . 2 (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
2 rhmrcl1 20502 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
32elexd 3512 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ V)
4 rhmrcl2 20503 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
54elexd 3512 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ V)
63, 5jca 511 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
76adantr 480 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
8 df-rim 20499 . . . . . 6 RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
98a1i 11 . . . . 5 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)}))
10 oveq12 7457 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆))
1110adantl 481 . . . . . 6 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆))
12 oveq12 7457 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
1312ancoms 458 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
1413adantl 481 . . . . . . 7 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
1514eleq2d 2830 . . . . . 6 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑓 ∈ (𝑠 RingHom 𝑟) ↔ 𝑓 ∈ (𝑆 RingHom 𝑅)))
1611, 15rabeqbidv 3462 . . . . 5 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)} = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)})
17 simpl 482 . . . . 5 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑅 ∈ V)
18 simpr 484 . . . . 5 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑆 ∈ V)
19 ovex 7481 . . . . . . 7 (𝑅 RingHom 𝑆) ∈ V
2019rabex 5357 . . . . . 6 {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V
2120a1i 11 . . . . 5 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V)
229, 16, 17, 18, 21ovmpod 7602 . . . 4 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 RingIso 𝑆) = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)})
2322eleq2d 2830 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)}))
24 cnveq 5898 . . . . 5 (𝑓 = 𝐹𝑓 = 𝐹)
2524eleq1d 2829 . . . 4 (𝑓 = 𝐹 → (𝑓 ∈ (𝑆 RingHom 𝑅) ↔ 𝐹 ∈ (𝑆 RingHom 𝑅)))
2625elrab 3708 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))
2723, 26bitrdi 287 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅))))
281, 7, 27pm5.21nii 378 1 (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  ccnv 5699  (class class class)co 7448  cmpo 7450  Ringcrg 20260   RingHom crh 20495   RingIso crs 20496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mhm 18818  df-ghm 19253  df-mgp 20162  df-ur 20209  df-ring 20262  df-rhm 20498  df-rim 20499
This theorem is referenced by:  isrim  20518  rimrhm  20522  ringcinv  20693  rimcnv  42472  rimco  42473  ringcinvALTV  48033
  Copyright terms: Public domain W3C validator