MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrim0 Structured version   Visualization version   GIF version

Theorem isrim0 20404
Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 19181. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.)
Assertion
Ref Expression
isrim0 (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))

Proof of Theorem isrim0
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rimrcl 20403 . 2 (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
2 rhmrcl1 20398 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
32elexd 3461 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ V)
4 rhmrcl2 20399 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
54elexd 3461 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ V)
63, 5jca 511 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
76adantr 480 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
8 df-rim 20395 . . . . . 6 RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
98a1i 11 . . . . 5 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)}))
10 oveq12 7363 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆))
1110adantl 481 . . . . . 6 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆))
12 oveq12 7363 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
1312ancoms 458 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
1413adantl 481 . . . . . . 7 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
1514eleq2d 2819 . . . . . 6 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑓 ∈ (𝑠 RingHom 𝑟) ↔ 𝑓 ∈ (𝑆 RingHom 𝑅)))
1611, 15rabeqbidv 3414 . . . . 5 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)} = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)})
17 simpl 482 . . . . 5 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑅 ∈ V)
18 simpr 484 . . . . 5 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑆 ∈ V)
19 ovex 7387 . . . . . . 7 (𝑅 RingHom 𝑆) ∈ V
2019rabex 5281 . . . . . 6 {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V
2120a1i 11 . . . . 5 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V)
229, 16, 17, 18, 21ovmpod 7506 . . . 4 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 RingIso 𝑆) = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)})
2322eleq2d 2819 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)}))
24 cnveq 5819 . . . . 5 (𝑓 = 𝐹𝑓 = 𝐹)
2524eleq1d 2818 . . . 4 (𝑓 = 𝐹 → (𝑓 ∈ (𝑆 RingHom 𝑅) ↔ 𝐹 ∈ (𝑆 RingHom 𝑅)))
2625elrab 3643 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))
2723, 26bitrdi 287 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅))))
281, 7, 27pm5.21nii 378 1 (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  ccnv 5620  (class class class)co 7354  cmpo 7356  Ringcrg 20155   RingHom crh 20391   RingIso crs 20392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-plusg 17178  df-0g 17349  df-mhm 18695  df-ghm 19129  df-mgp 20063  df-ur 20104  df-ring 20157  df-rhm 20394  df-rim 20395
This theorem is referenced by:  isrim  20413  rimrhm  20415  ringcinv  20590  rimcnv  42638  rimco  42639  ringcinvALTV  48437
  Copyright terms: Public domain W3C validator