![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrim0 | Structured version Visualization version GIF version |
Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 19296. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.) |
Ref | Expression |
---|---|
isrim0 | ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rimrcl 20499 | . 2 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | |
2 | rhmrcl1 20493 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
3 | 2 | elexd 3502 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ V) |
4 | rhmrcl2 20494 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
5 | 4 | elexd 3502 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ V) |
6 | 3, 5 | jca 511 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
7 | 6 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
8 | df-rim 20490 | . . . . . 6 ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) | |
9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)})) |
10 | oveq12 7440 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆)) | |
11 | 10 | adantl 481 | . . . . . 6 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆)) |
12 | oveq12 7440 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) | |
13 | 12 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) |
14 | 13 | adantl 481 | . . . . . . 7 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) |
15 | 14 | eleq2d 2825 | . . . . . 6 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (◡𝑓 ∈ (𝑠 RingHom 𝑟) ↔ ◡𝑓 ∈ (𝑆 RingHom 𝑅))) |
16 | 11, 15 | rabeqbidv 3452 | . . . . 5 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)} = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)}) |
17 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑅 ∈ V) | |
18 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑆 ∈ V) | |
19 | ovex 7464 | . . . . . . 7 ⊢ (𝑅 RingHom 𝑆) ∈ V | |
20 | 19 | rabex 5345 | . . . . . 6 ⊢ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V |
21 | 20 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V) |
22 | 9, 16, 17, 18, 21 | ovmpod 7585 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 RingIso 𝑆) = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)}) |
23 | 22 | eleq2d 2825 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)})) |
24 | cnveq 5887 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
25 | 24 | eleq1d 2824 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡𝑓 ∈ (𝑆 RingHom 𝑅) ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
26 | 25 | elrab 3695 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
27 | 23, 26 | bitrdi 287 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)))) |
28 | 1, 7, 27 | pm5.21nii 378 | 1 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 ◡ccnv 5688 (class class class)co 7431 ∈ cmpo 7433 Ringcrg 20251 RingHom crh 20486 RingIso crs 20487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-0g 17488 df-mhm 18809 df-ghm 19244 df-mgp 20153 df-ur 20200 df-ring 20253 df-rhm 20489 df-rim 20490 |
This theorem is referenced by: isrim 20509 rimrhm 20513 ringcinv 20688 rimcnv 42504 rimco 42505 ringcinvALTV 48154 |
Copyright terms: Public domain | W3C validator |