MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrim0 Structured version   Visualization version   GIF version

Theorem isrim0 19882
Description: An isomorphism of rings is a homomorphism whose converse is also a homomorphism . (Contributed by AV, 22-Oct-2019.)
Assertion
Ref Expression
isrim0 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅))))

Proof of Theorem isrim0
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngiso 19875 . . . . 5 RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
21a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)}))
3 oveq12 7264 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆))
43adantl 481 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆))
5 oveq12 7264 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
65ancoms 458 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
76adantl 481 . . . . . 6 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
87eleq2d 2824 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑓 ∈ (𝑠 RingHom 𝑟) ↔ 𝑓 ∈ (𝑆 RingHom 𝑅)))
94, 8rabeqbidv 3410 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)} = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)})
10 elex 3440 . . . . 5 (𝑅𝑉𝑅 ∈ V)
1110adantr 480 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑅 ∈ V)
12 elex 3440 . . . . 5 (𝑆𝑊𝑆 ∈ V)
1312adantl 481 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑆 ∈ V)
14 ovex 7288 . . . . . 6 (𝑅 RingHom 𝑆) ∈ V
1514rabex 5251 . . . . 5 {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V
1615a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V)
172, 9, 11, 13, 16ovmpod 7403 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅 RingIso 𝑆) = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)})
1817eleq2d 2824 . 2 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)}))
19 cnveq 5771 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
2019eleq1d 2823 . . 3 (𝑓 = 𝐹 → (𝑓 ∈ (𝑆 RingHom 𝑅) ↔ 𝐹 ∈ (𝑆 RingHom 𝑅)))
2120elrab 3617 . 2 (𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))
2218, 21bitrdi 286 1 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  ccnv 5579  (class class class)co 7255  cmpo 7257   RingHom crh 19871   RingIso crs 19872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-rngiso 19875
This theorem is referenced by:  isrim  19892  brric2  19904  ringcinv  45478  ringcinvALTV  45502
  Copyright terms: Public domain W3C validator