![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrim0 | Structured version Visualization version GIF version |
Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 19133. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.) |
Ref | Expression |
---|---|
isrim0 | ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rimrcl 20252 | . 2 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | |
2 | rhmrcl1 20247 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
3 | 2 | elexd 3494 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ V) |
4 | rhmrcl2 20248 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
5 | 4 | elexd 3494 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ V) |
6 | 3, 5 | jca 512 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
7 | 6 | adantr 481 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
8 | df-rngiso 20244 | . . . . . 6 ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) | |
9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)})) |
10 | oveq12 7414 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆)) | |
11 | 10 | adantl 482 | . . . . . 6 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆)) |
12 | oveq12 7414 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) | |
13 | 12 | ancoms 459 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) |
14 | 13 | adantl 482 | . . . . . . 7 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) |
15 | 14 | eleq2d 2819 | . . . . . 6 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (◡𝑓 ∈ (𝑠 RingHom 𝑟) ↔ ◡𝑓 ∈ (𝑆 RingHom 𝑅))) |
16 | 11, 15 | rabeqbidv 3449 | . . . . 5 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)} = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)}) |
17 | simpl 483 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑅 ∈ V) | |
18 | simpr 485 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑆 ∈ V) | |
19 | ovex 7438 | . . . . . . 7 ⊢ (𝑅 RingHom 𝑆) ∈ V | |
20 | 19 | rabex 5331 | . . . . . 6 ⊢ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V |
21 | 20 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V) |
22 | 9, 16, 17, 18, 21 | ovmpod 7556 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 RingIso 𝑆) = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)}) |
23 | 22 | eleq2d 2819 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)})) |
24 | cnveq 5871 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
25 | 24 | eleq1d 2818 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡𝑓 ∈ (𝑆 RingHom 𝑅) ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
26 | 25 | elrab 3682 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
27 | 23, 26 | bitrdi 286 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)))) |
28 | 1, 7, 27 | pm5.21nii 379 | 1 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 ◡ccnv 5674 (class class class)co 7405 ∈ cmpo 7407 Ringcrg 20049 RingHom crh 20240 RingIso crs 20241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-mhm 18667 df-ghm 19084 df-mgp 19982 df-ur 19999 df-ring 20051 df-rnghom 20243 df-rngiso 20244 |
This theorem is referenced by: isrim 20262 rimrhm 20266 rimcnv 41089 rimco 41090 ringcinv 46883 ringcinvALTV 46907 |
Copyright terms: Public domain | W3C validator |