| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isrim0 | Structured version Visualization version GIF version | ||
| Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 19178. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| isrim0 | ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rimrcl 20400 | . 2 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | |
| 2 | rhmrcl1 20395 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
| 3 | 2 | elexd 3460 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ V) |
| 4 | rhmrcl2 20396 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
| 5 | 4 | elexd 3460 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ V) |
| 6 | 3, 5 | jca 511 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
| 8 | df-rim 20392 | . . . . . 6 ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)})) |
| 10 | oveq12 7355 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆)) | |
| 11 | 10 | adantl 481 | . . . . . 6 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆)) |
| 12 | oveq12 7355 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) | |
| 13 | 12 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) |
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) |
| 15 | 14 | eleq2d 2817 | . . . . . 6 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (◡𝑓 ∈ (𝑠 RingHom 𝑟) ↔ ◡𝑓 ∈ (𝑆 RingHom 𝑅))) |
| 16 | 11, 15 | rabeqbidv 3413 | . . . . 5 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)} = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)}) |
| 17 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑅 ∈ V) | |
| 18 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑆 ∈ V) | |
| 19 | ovex 7379 | . . . . . . 7 ⊢ (𝑅 RingHom 𝑆) ∈ V | |
| 20 | 19 | rabex 5277 | . . . . . 6 ⊢ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V |
| 21 | 20 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V) |
| 22 | 9, 16, 17, 18, 21 | ovmpod 7498 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 RingIso 𝑆) = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)}) |
| 23 | 22 | eleq2d 2817 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)})) |
| 24 | cnveq 5813 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
| 25 | 24 | eleq1d 2816 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡𝑓 ∈ (𝑆 RingHom 𝑅) ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
| 26 | 25 | elrab 3647 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
| 27 | 23, 26 | bitrdi 287 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)))) |
| 28 | 1, 7, 27 | pm5.21nii 378 | 1 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ◡ccnv 5615 (class class class)co 7346 ∈ cmpo 7348 Ringcrg 20152 RingHom crh 20388 RingIso crs 20389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mhm 18691 df-ghm 19126 df-mgp 20060 df-ur 20101 df-ring 20154 df-rhm 20391 df-rim 20392 |
| This theorem is referenced by: isrim 20410 rimrhm 20412 ringcinv 20587 rimcnv 42556 rimco 42557 ringcinvALTV 48347 |
| Copyright terms: Public domain | W3C validator |