|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > isrim0 | Structured version Visualization version GIF version | ||
| Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 19283. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.) | 
| Ref | Expression | 
|---|---|
| isrim0 | ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rimrcl 20482 | . 2 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | |
| 2 | rhmrcl1 20476 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
| 3 | 2 | elexd 3504 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ V) | 
| 4 | rhmrcl2 20477 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
| 5 | 4 | elexd 3504 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ V) | 
| 6 | 3, 5 | jca 511 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | 
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | 
| 8 | df-rim 20473 | . . . . . 6 ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)})) | 
| 10 | oveq12 7440 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆)) | |
| 11 | 10 | adantl 481 | . . . . . 6 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆)) | 
| 12 | oveq12 7440 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) | |
| 13 | 12 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) | 
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) | 
| 15 | 14 | eleq2d 2827 | . . . . . 6 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (◡𝑓 ∈ (𝑠 RingHom 𝑟) ↔ ◡𝑓 ∈ (𝑆 RingHom 𝑅))) | 
| 16 | 11, 15 | rabeqbidv 3455 | . . . . 5 ⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)} = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)}) | 
| 17 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑅 ∈ V) | |
| 18 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑆 ∈ V) | |
| 19 | ovex 7464 | . . . . . . 7 ⊢ (𝑅 RingHom 𝑆) ∈ V | |
| 20 | 19 | rabex 5339 | . . . . . 6 ⊢ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V | 
| 21 | 20 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V) | 
| 22 | 9, 16, 17, 18, 21 | ovmpod 7585 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 RingIso 𝑆) = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)}) | 
| 23 | 22 | eleq2d 2827 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)})) | 
| 24 | cnveq 5884 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
| 25 | 24 | eleq1d 2826 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡𝑓 ∈ (𝑆 RingHom 𝑅) ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) | 
| 26 | 25 | elrab 3692 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) | 
| 27 | 23, 26 | bitrdi 287 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)))) | 
| 28 | 1, 7, 27 | pm5.21nii 378 | 1 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 Vcvv 3480 ◡ccnv 5684 (class class class)co 7431 ∈ cmpo 7433 Ringcrg 20230 RingHom crh 20469 RingIso crs 20470 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-0g 17486 df-mhm 18796 df-ghm 19231 df-mgp 20138 df-ur 20179 df-ring 20232 df-rhm 20472 df-rim 20473 | 
| This theorem is referenced by: isrim 20492 rimrhm 20496 ringcinv 20671 rimcnv 42527 rimco 42528 ringcinvALTV 48226 | 
| Copyright terms: Public domain | W3C validator |