MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrim0 Structured version   Visualization version   GIF version

Theorem isrim0 19473
Description: An isomorphism of rings is a homomorphism whose converse is also a homomorphism . (Contributed by AV, 22-Oct-2019.)
Assertion
Ref Expression
isrim0 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅))))

Proof of Theorem isrim0
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngiso 19466 . . . . 5 RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
21a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)}))
3 oveq12 7155 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆))
43adantl 485 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆))
5 oveq12 7155 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
65ancoms 462 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
76adantl 485 . . . . . 6 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
87eleq2d 2901 . . . . 5 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑓 ∈ (𝑠 RingHom 𝑟) ↔ 𝑓 ∈ (𝑆 RingHom 𝑅)))
94, 8rabeqbidv 3471 . . . 4 (((𝑅𝑉𝑆𝑊) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)} = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)})
10 elex 3498 . . . . 5 (𝑅𝑉𝑅 ∈ V)
1110adantr 484 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑅 ∈ V)
12 elex 3498 . . . . 5 (𝑆𝑊𝑆 ∈ V)
1312adantl 485 . . . 4 ((𝑅𝑉𝑆𝑊) → 𝑆 ∈ V)
14 ovex 7179 . . . . . 6 (𝑅 RingHom 𝑆) ∈ V
1514rabex 5222 . . . . 5 {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V
1615a1i 11 . . . 4 ((𝑅𝑉𝑆𝑊) → {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V)
172, 9, 11, 13, 16ovmpod 7292 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅 RingIso 𝑆) = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)})
1817eleq2d 2901 . 2 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)}))
19 cnveq 5732 . . . 4 (𝑓 = 𝐹𝑓 = 𝐹)
2019eleq1d 2900 . . 3 (𝑓 = 𝐹 → (𝑓 ∈ (𝑆 RingHom 𝑅) ↔ 𝐹 ∈ (𝑆 RingHom 𝑅)))
2120elrab 3666 . 2 (𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))
2218, 21syl6bb 290 1 ((𝑅𝑉𝑆𝑊) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  {crab 3137  Vcvv 3480  ccnv 5542  (class class class)co 7146  cmpo 7148   RingHom crh 19462   RingIso crs 19463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pr 5318
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-iota 6303  df-fun 6346  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-rngiso 19466
This theorem is referenced by:  isrim  19483  brric2  19495  ringcinv  44522  ringcinvALTV  44546
  Copyright terms: Public domain W3C validator