MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrim0 Structured version   Visualization version   GIF version

Theorem isrim0 20399
Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 19204. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.)
Assertion
Ref Expression
isrim0 (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))

Proof of Theorem isrim0
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rimrcl 20398 . 2 (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
2 rhmrcl1 20392 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
32elexd 3474 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ V)
4 rhmrcl2 20393 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
54elexd 3474 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ V)
63, 5jca 511 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
76adantr 480 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
8 df-rim 20389 . . . . . 6 RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
98a1i 11 . . . . 5 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)}))
10 oveq12 7399 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆))
1110adantl 481 . . . . . 6 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆))
12 oveq12 7399 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
1312ancoms 458 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
1413adantl 481 . . . . . . 7 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅))
1514eleq2d 2815 . . . . . 6 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → (𝑓 ∈ (𝑠 RingHom 𝑟) ↔ 𝑓 ∈ (𝑆 RingHom 𝑅)))
1611, 15rabeqbidv 3427 . . . . 5 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)} = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)})
17 simpl 482 . . . . 5 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑅 ∈ V)
18 simpr 484 . . . . 5 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑆 ∈ V)
19 ovex 7423 . . . . . . 7 (𝑅 RingHom 𝑆) ∈ V
2019rabex 5297 . . . . . 6 {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V
2120a1i 11 . . . . 5 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V)
229, 16, 17, 18, 21ovmpod 7544 . . . 4 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 RingIso 𝑆) = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)})
2322eleq2d 2815 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)}))
24 cnveq 5840 . . . . 5 (𝑓 = 𝐹𝑓 = 𝐹)
2524eleq1d 2814 . . . 4 (𝑓 = 𝐹 → (𝑓 ∈ (𝑆 RingHom 𝑅) ↔ 𝐹 ∈ (𝑆 RingHom 𝑅)))
2625elrab 3662 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ 𝑓 ∈ (𝑆 RingHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))
2723, 26bitrdi 287 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅))))
281, 7, 27pm5.21nii 378 1 (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹 ∈ (𝑆 RingHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  ccnv 5640  (class class class)co 7390  cmpo 7392  Ringcrg 20149   RingHom crh 20385   RingIso crs 20386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mhm 18717  df-ghm 19152  df-mgp 20057  df-ur 20098  df-ring 20151  df-rhm 20388  df-rim 20389
This theorem is referenced by:  isrim  20408  rimrhm  20412  ringcinv  20587  rimcnv  42512  rimco  42513  ringcinvALTV  48302
  Copyright terms: Public domain W3C validator