| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmpocl | Structured version Visualization version GIF version | ||
| Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| elmpocl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| elmpocl | ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmpocl.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | df-mpo 7392 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 3 | 1, 2 | eqtri 2752 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 4 | 3 | dmeqi 5868 | . . . 4 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 5 | dmoprabss 7493 | . . . 4 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} ⊆ (𝐴 × 𝐵) | |
| 6 | 4, 5 | eqsstri 3993 | . . 3 ⊢ dom 𝐹 ⊆ (𝐴 × 𝐵) |
| 7 | elfvdm 6895 | . . . 4 ⊢ (𝑋 ∈ (𝐹‘〈𝑆, 𝑇〉) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) | |
| 8 | df-ov 7390 | . . . 4 ⊢ (𝑆𝐹𝑇) = (𝐹‘〈𝑆, 𝑇〉) | |
| 9 | 7, 8 | eleq2s 2846 | . . 3 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) |
| 10 | 6, 9 | sselid 3944 | . 2 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 〈𝑆, 𝑇〉 ∈ (𝐴 × 𝐵)) |
| 11 | opelxp 5674 | . 2 ⊢ (〈𝑆, 𝑇〉 ∈ (𝐴 × 𝐵) ↔ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) | |
| 12 | 10, 11 | sylib 218 | 1 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4595 × cxp 5636 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 {coprab 7388 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: elmpocl1 7631 elmpocl2 7632 elovmpo 7634 elovmporab 7635 elovmporab1w 7636 elovmporab1 7637 el2mpocsbcl 8064 ixxssixx 13320 funcrcl 17825 natrcl 17915 mgmhmrcl 18621 ismhm 18712 isghm 19147 isghmOLD 19148 isga 19223 isslw 19538 rnghmrcl 20347 rngimrcl 20355 isrhm 20387 rimrcl 20391 islmhm 20934 iscn2 23125 elflim2 23851 isfcls 23896 isnmhm 24634 limcrcl 25775 ewlkprop 29531 wwlknbp 29772 wspthnp 29780 iscvm 35246 mclsrcl 35548 intop 48191 naryrcl 48620 sectrcl2 49012 invrcl2 49014 isorcl2 49023 eloppf2 49123 uprcl 49173 oppc1stflem 49276 catcrcl2 49385 lanrcl 49610 ranrcl 49611 |
| Copyright terms: Public domain | W3C validator |