![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmpocl | Structured version Visualization version GIF version |
Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
elmpocl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
elmpocl | ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmpocl.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | df-mpo 7417 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | eqtri 2759 | . . . . 5 ⊢ 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
4 | 3 | dmeqi 5904 | . . . 4 ⊢ dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
5 | dmoprabss 7514 | . . . 4 ⊢ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} ⊆ (𝐴 × 𝐵) | |
6 | 4, 5 | eqsstri 4016 | . . 3 ⊢ dom 𝐹 ⊆ (𝐴 × 𝐵) |
7 | elfvdm 6928 | . . . 4 ⊢ (𝑋 ∈ (𝐹‘⟨𝑆, 𝑇⟩) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹) | |
8 | df-ov 7415 | . . . 4 ⊢ (𝑆𝐹𝑇) = (𝐹‘⟨𝑆, 𝑇⟩) | |
9 | 7, 8 | eleq2s 2850 | . . 3 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → ⟨𝑆, 𝑇⟩ ∈ dom 𝐹) |
10 | 6, 9 | sselid 3980 | . 2 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → ⟨𝑆, 𝑇⟩ ∈ (𝐴 × 𝐵)) |
11 | opelxp 5712 | . 2 ⊢ (⟨𝑆, 𝑇⟩ ∈ (𝐴 × 𝐵) ↔ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) | |
12 | 10, 11 | sylib 217 | 1 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ⟨cop 4634 × cxp 5674 dom cdm 5676 ‘cfv 6543 (class class class)co 7412 {coprab 7413 ∈ cmpo 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-dm 5686 df-iota 6495 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 |
This theorem is referenced by: elmpocl1 7652 elmpocl2 7653 elovmpo 7654 elovmporab 7655 elovmporab1w 7656 elovmporab1 7657 el2mpocsbcl 8074 ixxssixx 13343 funcrcl 17818 natrcl 17906 mgmhmrcl 18620 ismhm 18708 isghm 19131 isga 19197 isslw 19518 rnghmrcl 20330 rngimrcl 20338 isrhm 20370 rimrcl 20374 islmhm 20783 iscn2 22963 elflim2 23689 isfcls 23734 isnmhm 24484 limcrcl 25624 ewlkprop 29128 wwlknbp 29364 wspthnp 29372 iscvm 34549 mclsrcl 34851 intop 46880 naryrcl 47405 |
Copyright terms: Public domain | W3C validator |