| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmpocl | Structured version Visualization version GIF version | ||
| Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| elmpocl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| elmpocl | ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmpocl.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | df-mpo 7374 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 3 | 1, 2 | eqtri 2752 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 4 | 3 | dmeqi 5858 | . . . 4 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 5 | dmoprabss 7473 | . . . 4 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} ⊆ (𝐴 × 𝐵) | |
| 6 | 4, 5 | eqsstri 3990 | . . 3 ⊢ dom 𝐹 ⊆ (𝐴 × 𝐵) |
| 7 | elfvdm 6877 | . . . 4 ⊢ (𝑋 ∈ (𝐹‘〈𝑆, 𝑇〉) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) | |
| 8 | df-ov 7372 | . . . 4 ⊢ (𝑆𝐹𝑇) = (𝐹‘〈𝑆, 𝑇〉) | |
| 9 | 7, 8 | eleq2s 2846 | . . 3 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 〈𝑆, 𝑇〉 ∈ dom 𝐹) |
| 10 | 6, 9 | sselid 3941 | . 2 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → 〈𝑆, 𝑇〉 ∈ (𝐴 × 𝐵)) |
| 11 | opelxp 5667 | . 2 ⊢ (〈𝑆, 𝑇〉 ∈ (𝐴 × 𝐵) ↔ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) | |
| 12 | 10, 11 | sylib 218 | 1 ⊢ (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 × cxp 5629 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 {coprab 7370 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-dm 5641 df-iota 6452 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: elmpocl1 7611 elmpocl2 7612 elovmpo 7614 elovmporab 7615 elovmporab1w 7616 elovmporab1 7617 el2mpocsbcl 8041 ixxssixx 13296 funcrcl 17805 natrcl 17895 mgmhmrcl 18603 ismhm 18694 isghm 19129 isghmOLD 19130 isga 19205 isslw 19522 rnghmrcl 20358 rngimrcl 20366 isrhm 20398 rimrcl 20402 islmhm 20966 iscn2 23158 elflim2 23884 isfcls 23929 isnmhm 24667 limcrcl 25808 ewlkprop 29584 wwlknbp 29822 wspthnp 29830 iscvm 35239 mclsrcl 35541 intop 48184 naryrcl 48613 sectrcl2 49005 invrcl2 49007 isorcl2 49016 eloppf2 49116 uprcl 49166 oppc1stflem 49269 catcrcl2 49378 lanrcl 49603 ranrcl 49604 |
| Copyright terms: Public domain | W3C validator |