MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringi Structured version   Visualization version   GIF version

Theorem ringi 19306
Description: Properties of a unital ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringi.b 𝐵 = (Base‘𝑅)
ringi.p + = (+g𝑅)
ringi.t · = (.r𝑅)
Assertion
Ref Expression
ringi ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))

Proof of Theorem ringi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringi.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
2 eqid 2798 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 ringi.p . . . . . . . . . 10 + = (+g𝑅)
4 ringi.t . . . . . . . . . 10 · = (.r𝑅)
51, 2, 3, 4isring 19294 . . . . . . . . 9 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
65simp3bi 1144 . . . . . . . 8 (𝑅 ∈ Ring → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
76adantr 484 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
8 simpr1 1191 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
9 rsp 3170 . . . . . . 7 (∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) → (𝑥𝐵 → ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
107, 8, 9sylc 65 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
11 simpr2 1192 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
12 rsp 3170 . . . . . 6 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) → (𝑦𝐵 → ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
1310, 11, 12sylc 65 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
14 simpr3 1193 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
15 rsp 3170 . . . . 5 (∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) → (𝑧𝐵 → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
1613, 14, 15sylc 65 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
1716simpld 498 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
1817caovdig 7342 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
1916simprd 499 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
2019caovdirg 7345 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
2118, 20jca 515 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Mndcmnd 17903  Grpcgrp 18095  mulGrpcmgp 19232  Ringcrg 19290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138  df-ring 19292
This theorem is referenced by:  ringdi  19312  ringdir  19313
  Copyright terms: Public domain W3C validator