MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringi Structured version   Visualization version   GIF version

Theorem ringi 18768
Description: Properties of a unital ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringi.b 𝐵 = (Base‘𝑅)
ringi.p + = (+g𝑅)
ringi.t · = (.r𝑅)
Assertion
Ref Expression
ringi ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))

Proof of Theorem ringi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringi.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
2 eqid 2771 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 ringi.p . . . . . . . . . 10 + = (+g𝑅)
4 ringi.t . . . . . . . . . 10 · = (.r𝑅)
51, 2, 3, 4isring 18759 . . . . . . . . 9 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
65simp3bi 1141 . . . . . . . 8 (𝑅 ∈ Ring → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
76adantr 466 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
8 simpr1 1233 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
9 rsp 3078 . . . . . . 7 (∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) → (𝑥𝐵 → ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
107, 8, 9sylc 65 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
11 simpr2 1235 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
12 rsp 3078 . . . . . 6 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) → (𝑦𝐵 → ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
1310, 11, 12sylc 65 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
14 simpr3 1237 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
15 rsp 3078 . . . . 5 (∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) → (𝑧𝐵 → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
1613, 14, 15sylc 65 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
1716simpld 482 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
1817caovdig 6995 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
1916simprd 483 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
2019caovdirg 6998 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
2118, 20jca 501 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  .rcmulr 16150  Mndcmnd 17502  Grpcgrp 17630  mulGrpcmgp 18697  Ringcrg 18755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-nul 4923
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-iota 5994  df-fv 6039  df-ov 6796  df-ring 18757
This theorem is referenced by:  ringdi  18774  ringdir  18775
  Copyright terms: Public domain W3C validator