Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbd Structured version   Visualization version   GIF version

Theorem rnmptbd 45223
Description: Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbd.x 𝑥𝜑
rnmptbd.b ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptbd (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rnmptbd
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5106 . . . . 5 (𝑦 = 𝑤 → (𝐵𝑦𝐵𝑤))
21ralbidv 3156 . . . 4 (𝑦 = 𝑤 → (∀𝑥𝐴 𝐵𝑦 ↔ ∀𝑥𝐴 𝐵𝑤))
32cbvrexvw 3214 . . 3 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤)
43a1i 11 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤))
5 rnmptbd.x . . 3 𝑥𝜑
6 nfv 1914 . . 3 𝑤𝜑
7 rnmptbd.b . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
85, 6, 7rnmptbdlem 45222 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑤))
9 breq2 5106 . . . . . 6 (𝑤 = 𝑦 → (𝑢𝑤𝑢𝑦))
109ralbidv 3156 . . . . 5 (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑤 ↔ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑦))
11 breq1 5105 . . . . . 6 (𝑢 = 𝑧 → (𝑢𝑦𝑧𝑦))
1211cbvralvw 3213 . . . . 5 (∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑦 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
1310, 12bitrdi 287 . . . 4 (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑤 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
1413cbvrexvw 3214 . . 3 (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑤 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
1514a1i 11 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑤 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
164, 8, 153bitrd 305 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1783  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  cmpt 5183  ran crn 5632  cr 11043  cle 11185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-mpt 5184  df-cnv 5639  df-dm 5641  df-rn 5642
This theorem is referenced by:  supxrre3rnmpt  45398
  Copyright terms: Public domain W3C validator