Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbd | Structured version Visualization version GIF version |
Description: Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rnmptbd.x | ⊢ Ⅎ𝑥𝜑 |
rnmptbd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
rnmptbd | ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5083 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑤)) | |
2 | 1 | ralbidv 3123 | . . . 4 ⊢ (𝑦 = 𝑤 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤)) |
3 | 2 | cbvrexvw 3382 | . . 3 ⊢ (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤) |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤)) |
5 | rnmptbd.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
6 | nfv 1921 | . . 3 ⊢ Ⅎ𝑤𝜑 | |
7 | rnmptbd.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
8 | 5, 6, 7 | rnmptbdlem 42783 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑢 ≤ 𝑤)) |
9 | breq2 5083 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑢 ≤ 𝑤 ↔ 𝑢 ≤ 𝑦)) | |
10 | 9 | ralbidv 3123 | . . . . 5 ⊢ (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑢 ≤ 𝑤 ↔ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑢 ≤ 𝑦)) |
11 | breq1 5082 | . . . . . 6 ⊢ (𝑢 = 𝑧 → (𝑢 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦)) | |
12 | 11 | cbvralvw 3381 | . . . . 5 ⊢ (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑢 ≤ 𝑦 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
13 | 10, 12 | bitrdi 287 | . . . 4 ⊢ (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑢 ≤ 𝑤 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
14 | 13 | cbvrexvw 3382 | . . 3 ⊢ (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑢 ≤ 𝑤 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑢 ≤ 𝑤 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
16 | 4, 8, 15 | 3bitrd 305 | 1 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 Ⅎwnf 1790 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 class class class wbr 5079 ↦ cmpt 5162 ran crn 5591 ℝcr 10881 ≤ cle 11021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-mpt 5163 df-cnv 5598 df-dm 5600 df-rn 5601 |
This theorem is referenced by: supxrre3rnmpt 42951 |
Copyright terms: Public domain | W3C validator |