Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbd Structured version   Visualization version   GIF version

Theorem rnmptbd 41894
Description: Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbd.x 𝑥𝜑
rnmptbd.b ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptbd (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rnmptbd
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5034 . . . . 5 (𝑦 = 𝑤 → (𝐵𝑦𝐵𝑤))
21ralbidv 3162 . . . 4 (𝑦 = 𝑤 → (∀𝑥𝐴 𝐵𝑦 ↔ ∀𝑥𝐴 𝐵𝑤))
32cbvrexvw 3397 . . 3 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤)
43a1i 11 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤))
5 rnmptbd.x . . 3 𝑥𝜑
6 nfv 1915 . . 3 𝑤𝜑
7 rnmptbd.b . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
85, 6, 7rnmptbdlem 41893 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑤))
9 breq2 5034 . . . . . 6 (𝑤 = 𝑦 → (𝑢𝑤𝑢𝑦))
109ralbidv 3162 . . . . 5 (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑤 ↔ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑦))
11 breq1 5033 . . . . . 6 (𝑢 = 𝑧 → (𝑢𝑦𝑧𝑦))
1211cbvralvw 3396 . . . . 5 (∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑦 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
1310, 12syl6bb 290 . . . 4 (𝑤 = 𝑦 → (∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑤 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
1413cbvrexvw 3397 . . 3 (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑤 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
1514a1i 11 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑢 ∈ ran (𝑥𝐴𝐵)𝑢𝑤 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
164, 8, 153bitrd 308 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wnf 1785  wcel 2111  wral 3106  wrex 3107   class class class wbr 5030  cmpt 5110  ran crn 5520  cr 10525  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-mpt 5111  df-cnv 5527  df-dm 5529  df-rn 5530
This theorem is referenced by:  supxrre3rnmpt  42066  supminfrnmpt  42082
  Copyright terms: Public domain W3C validator