Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbdlem Structured version   Visualization version   GIF version

Theorem rnmptbdlem 45256
Description: Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbdlem.x 𝑥𝜑
rnmptbdlem.y 𝑦𝜑
rnmptbdlem.b ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptbdlem (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rnmptbdlem
StepHypRef Expression
1 rnmptbdlem.x . . . . 5 𝑥𝜑
2 nfcv 2892 . . . . . 6 𝑥
3 nfra1 3262 . . . . . 6 𝑥𝑥𝐴 𝐵𝑦
42, 3nfrexw 3289 . . . . 5 𝑥𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦
51, 4nfan 1899 . . . 4 𝑥(𝜑 ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
6 simpr 484 . . . 4 ((𝜑 ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
75, 6rnmptbdd 45246 . . 3 ((𝜑 ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
87ex 412 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
9 rnmptbdlem.y . . 3 𝑦𝜑
10 nfmpt1 5209 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
1110nfrn 5919 . . . . . . . 8 𝑥ran (𝑥𝐴𝐵)
12 nfv 1914 . . . . . . . 8 𝑥 𝑧𝑦
1311, 12nfralw 3287 . . . . . . 7 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦
141, 13nfan 1899 . . . . . 6 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
15 breq1 5113 . . . . . . 7 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
16 simplr 768 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
17 eqid 2730 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
18 simpr 484 . . . . . . . 8 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → 𝑥𝐴)
19 rnmptbdlem.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
2019adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → 𝐵𝑉)
2117, 18, 20elrnmpt1d 5931 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2215, 16, 21rspcdva 3592 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → 𝐵𝑦)
2314, 22ralrimia 3237 . . . . 5 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) → ∀𝑥𝐴 𝐵𝑦)
2423ex 412 . . . 4 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∀𝑥𝐴 𝐵𝑦))
2524a1d 25 . . 3 (𝜑 → (𝑦 ∈ ℝ → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∀𝑥𝐴 𝐵𝑦)))
269, 25reximdai 3240 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦))
278, 26impbid 212 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1783  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110  cmpt 5191  ran crn 5642  cr 11074  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by:  rnmptbd  45257
  Copyright terms: Public domain W3C validator