Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbdlem Structured version   Visualization version   GIF version

Theorem rnmptbdlem 44766
Description: Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbdlem.x 𝑥𝜑
rnmptbdlem.y 𝑦𝜑
rnmptbdlem.b ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptbdlem (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rnmptbdlem
StepHypRef Expression
1 rnmptbdlem.x . . . . 5 𝑥𝜑
2 nfcv 2891 . . . . . 6 𝑥
3 nfra1 3271 . . . . . 6 𝑥𝑥𝐴 𝐵𝑦
42, 3nfrexw 3300 . . . . 5 𝑥𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦
51, 4nfan 1894 . . . 4 𝑥(𝜑 ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
6 simpr 483 . . . 4 ((𝜑 ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
75, 6rnmptbdd 44756 . . 3 ((𝜑 ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
87ex 411 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
9 rnmptbdlem.y . . 3 𝑦𝜑
10 nfmpt1 5257 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
1110nfrn 5954 . . . . . . . 8 𝑥ran (𝑥𝐴𝐵)
12 nfv 1909 . . . . . . . 8 𝑥 𝑧𝑦
1311, 12nfralw 3298 . . . . . . 7 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦
141, 13nfan 1894 . . . . . 6 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
15 breq1 5152 . . . . . . 7 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
16 simplr 767 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
17 eqid 2725 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
18 simpr 483 . . . . . . . 8 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → 𝑥𝐴)
19 rnmptbdlem.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
2019adantlr 713 . . . . . . . 8 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → 𝐵𝑉)
2117, 18, 20elrnmpt1d 5964 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2215, 16, 21rspcdva 3607 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → 𝐵𝑦)
2314, 22ralrimia 3245 . . . . 5 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) → ∀𝑥𝐴 𝐵𝑦)
2423ex 411 . . . 4 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∀𝑥𝐴 𝐵𝑦))
2524a1d 25 . . 3 (𝜑 → (𝑦 ∈ ℝ → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∀𝑥𝐴 𝐵𝑦)))
269, 25reximdai 3248 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦))
278, 26impbid 211 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wnf 1777  wcel 2098  wral 3050  wrex 3059   class class class wbr 5149  cmpt 5232  ran crn 5679  cr 11139  cle 11281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-mpt 5233  df-cnv 5686  df-dm 5688  df-rn 5689
This theorem is referenced by:  rnmptbd  44767
  Copyright terms: Public domain W3C validator