Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbdlem Structured version   Visualization version   GIF version

Theorem rnmptbdlem 43030
Description: Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbdlem.x 𝑥𝜑
rnmptbdlem.y 𝑦𝜑
rnmptbdlem.b ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptbdlem (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rnmptbdlem
StepHypRef Expression
1 rnmptbdlem.x . . . . 5 𝑥𝜑
2 nfcv 2905 . . . . . 6 𝑥
3 nfra1 3264 . . . . . 6 𝑥𝑥𝐴 𝐵𝑦
42, 3nfrexw 3293 . . . . 5 𝑥𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦
51, 4nfan 1901 . . . 4 𝑥(𝜑 ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
6 simpr 485 . . . 4 ((𝜑 ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
75, 6rnmptbdd 43019 . . 3 ((𝜑 ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
87ex 413 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
9 rnmptbdlem.y . . 3 𝑦𝜑
10 nfmpt1 5195 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
1110nfrn 5880 . . . . . . . 8 𝑥ran (𝑥𝐴𝐵)
12 nfv 1916 . . . . . . . 8 𝑥 𝑧𝑦
1311, 12nfralw 3291 . . . . . . 7 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦
141, 13nfan 1901 . . . . . 6 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
15 breq1 5090 . . . . . . 7 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
16 simplr 766 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
17 eqid 2737 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
18 simpr 485 . . . . . . . 8 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → 𝑥𝐴)
19 rnmptbdlem.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
2019adantlr 712 . . . . . . . 8 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → 𝐵𝑉)
2117, 18, 20elrnmpt1d 43002 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2215, 16, 21rspcdva 3571 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) ∧ 𝑥𝐴) → 𝐵𝑦)
2314, 22ralrimia 3238 . . . . 5 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) → ∀𝑥𝐴 𝐵𝑦)
2423ex 413 . . . 4 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∀𝑥𝐴 𝐵𝑦))
2524a1d 25 . . 3 (𝜑 → (𝑦 ∈ ℝ → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∀𝑥𝐴 𝐵𝑦)))
269, 25reximdai 3241 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦))
278, 26impbid 211 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wnf 1784  wcel 2105  wral 3062  wrex 3071   class class class wbr 5087  cmpt 5170  ran crn 5608  cr 10943  cle 11083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-br 5088  df-opab 5150  df-mpt 5171  df-cnv 5615  df-dm 5617  df-rn 5618
This theorem is referenced by:  rnmptbd  43031
  Copyright terms: Public domain W3C validator