Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptss2 Structured version   Visualization version   GIF version

Theorem rnmptss2 44556
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptss2.1 𝑥𝜑
rnmptss2.3 (𝜑𝐴𝐵)
rnmptss2.4 ((𝜑𝑥𝐴) → 𝐶𝑉)
Assertion
Ref Expression
rnmptss2 (𝜑 → ran (𝑥𝐴𝐶) ⊆ ran (𝑥𝐵𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem rnmptss2
StepHypRef Expression
1 rnmptss2.1 . 2 𝑥𝜑
2 nfmpt1 5250 . . 3 𝑥(𝑥𝐵𝐶)
32nfrn 5948 . 2 𝑥ran (𝑥𝐵𝐶)
4 eqid 2727 . 2 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
5 eqid 2727 . . 3 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
6 rnmptss2.3 . . . 4 (𝜑𝐴𝐵)
76sselda 3978 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐵)
8 rnmptss2.4 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
95, 7, 8elrnmpt1d 5958 . 2 ((𝜑𝑥𝐴) → 𝐶 ∈ ran (𝑥𝐵𝐶))
101, 3, 4, 9rnmptssdf 44553 1 (𝜑 → ran (𝑥𝐴𝐶) ⊆ ran (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1778  wcel 2099  wss 3944  cmpt 5225  ran crn 5673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-fun 6544  df-fn 6545  df-f 6546
This theorem is referenced by:  smflimsuplem4  46134
  Copyright terms: Public domain W3C validator