Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptss2 Structured version   Visualization version   GIF version

Theorem rnmptss2 45235
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptss2.1 𝑥𝜑
rnmptss2.3 (𝜑𝐴𝐵)
rnmptss2.4 ((𝜑𝑥𝐴) → 𝐶𝑉)
Assertion
Ref Expression
rnmptss2 (𝜑 → ran (𝑥𝐴𝐶) ⊆ ran (𝑥𝐵𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem rnmptss2
StepHypRef Expression
1 rnmptss2.1 . 2 𝑥𝜑
2 nfmpt1 5191 . . 3 𝑥(𝑥𝐵𝐶)
32nfrn 5894 . 2 𝑥ran (𝑥𝐵𝐶)
4 eqid 2729 . 2 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
5 eqid 2729 . . 3 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
6 rnmptss2.3 . . . 4 (𝜑𝐴𝐵)
76sselda 3935 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐵)
8 rnmptss2.4 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
95, 7, 8elrnmpt1d 5906 . 2 ((𝜑𝑥𝐴) → 𝐶 ∈ ran (𝑥𝐵𝐶))
101, 3, 4, 9rnmptssdf 45232 1 (𝜑 → ran (𝑥𝐴𝐶) ⊆ ran (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wss 3903  cmpt 5173  ran crn 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486
This theorem is referenced by:  smflimsuplem4  46804
  Copyright terms: Public domain W3C validator