Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrre3rnmpt Structured version   Visualization version   GIF version

Theorem supxrre3rnmpt 45418
Description: The indexed supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supxrre3rnmpt.x 𝑥𝜑
supxrre3rnmpt.a (𝜑𝐴 ≠ ∅)
supxrre3rnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
supxrre3rnmpt (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem supxrre3rnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 supxrre3rnmpt.x . . . 4 𝑥𝜑
2 eqid 2729 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supxrre3rnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 45184 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 supxrre3rnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6193 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 supxrre3 45315 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅) → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
84, 6, 7syl2anc 584 . 2 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
91, 3rnmptbd 45244 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
108, 9bitr4d 282 1 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1783  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3903  c0 4284   class class class wbr 5092  cmpt 5173  ran crn 5620  supcsup 9330  cr 11008  *cxr 11148   < clt 11149  cle 11150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350
This theorem is referenced by:  limsupvaluz2  45729  supcnvlimsup  45731  smfsupxr  46807  smflimsuplem2  46812  smflimsuplem5  46815
  Copyright terms: Public domain W3C validator