Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrre3rnmpt Structured version   Visualization version   GIF version

Theorem supxrre3rnmpt 44870
Description: The indexed supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supxrre3rnmpt.x 𝑥𝜑
supxrre3rnmpt.a (𝜑𝐴 ≠ ∅)
supxrre3rnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
supxrre3rnmpt (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem supxrre3rnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 supxrre3rnmpt.x . . . 4 𝑥𝜑
2 eqid 2725 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supxrre3rnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 44629 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 supxrre3rnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6244 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 supxrre3 44766 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅) → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
84, 6, 7syl2anc 582 . 2 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
91, 3rnmptbd 44691 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
108, 9bitr4d 281 1 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wnf 1777  wcel 2098  wne 2930  wral 3051  wrex 3060  wss 3941  c0 4319   class class class wbr 5144  cmpt 5227  ran crn 5674  supcsup 9458  cr 11132  *cxr 11272   < clt 11273  cle 11274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-po 5585  df-so 5586  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9460  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472
This theorem is referenced by:  limsupvaluz2  45185  supcnvlimsup  45187  smfsupxr  46263  smflimsuplem2  46268  smflimsuplem5  46271
  Copyright terms: Public domain W3C validator