Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrre3rnmpt Structured version   Visualization version   GIF version

Theorem supxrre3rnmpt 45398
Description: The indexed supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supxrre3rnmpt.x 𝑥𝜑
supxrre3rnmpt.a (𝜑𝐴 ≠ ∅)
supxrre3rnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
supxrre3rnmpt (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem supxrre3rnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 supxrre3rnmpt.x . . . 4 𝑥𝜑
2 eqid 2730 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supxrre3rnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 45162 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 supxrre3rnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6225 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 supxrre3 45294 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅) → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
84, 6, 7syl2anc 584 . 2 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
91, 3rnmptbd 45222 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
108, 9bitr4d 282 1 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1783  wcel 2109  wne 2927  wral 3046  wrex 3055  wss 3922  c0 4304   class class class wbr 5115  cmpt 5196  ran crn 5647  supcsup 9409  cr 11085  *cxr 11225   < clt 11226  cle 11227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-po 5554  df-so 5555  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9411  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426
This theorem is referenced by:  limsupvaluz2  45709  supcnvlimsup  45711  smfsupxr  46787  smflimsuplem2  46792  smflimsuplem5  46795
  Copyright terms: Public domain W3C validator