Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptelpm Structured version   Visualization version   GIF version

Theorem mptelpm 42712
Description: A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mptelpm.b ((𝜑𝑥𝐴) → 𝐵𝐶)
mptelpm.a (𝜑𝐴𝐷)
mptelpm.c (𝜑𝐶𝑉)
mptelpm.d (𝜑𝐷𝑊)
Assertion
Ref Expression
mptelpm (𝜑 → (𝑥𝐴𝐵) ∈ (𝐶pm 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem mptelpm
StepHypRef Expression
1 mptelpm.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝐶)
21fmpttd 6989 . . . 4 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
3 eqid 2738 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43, 1dmmptd 6578 . . . . . 6 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
54eqcomd 2744 . . . . 5 (𝜑𝐴 = dom (𝑥𝐴𝐵))
65feq2d 6586 . . . 4 (𝜑 → ((𝑥𝐴𝐵):𝐴𝐶 ↔ (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶))
72, 6mpbid 231 . . 3 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶)
8 mptelpm.a . . . 4 (𝜑𝐴𝐷)
94, 8eqsstrd 3959 . . 3 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝐷)
107, 9jca 512 . 2 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶 ∧ dom (𝑥𝐴𝐵) ⊆ 𝐷))
11 mptelpm.c . . 3 (𝜑𝐶𝑉)
12 mptelpm.d . . 3 (𝜑𝐷𝑊)
13 elpm2g 8632 . . 3 ((𝐶𝑉𝐷𝑊) → ((𝑥𝐴𝐵) ∈ (𝐶pm 𝐷) ↔ ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶 ∧ dom (𝑥𝐴𝐵) ⊆ 𝐷)))
1411, 12, 13syl2anc 584 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ (𝐶pm 𝐷) ↔ ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶 ∧ dom (𝑥𝐴𝐵) ⊆ 𝐷)))
1510, 14mpbird 256 1 (𝜑 → (𝑥𝐴𝐵) ∈ (𝐶pm 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wss 3887  cmpt 5157  dom cdm 5589  wf 6429  (class class class)co 7275  pm cpm 8616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-pm 8618
This theorem is referenced by:  dvnmptconst  43482  dvnmul  43484
  Copyright terms: Public domain W3C validator