Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptelpm Structured version   Visualization version   GIF version

Theorem mptelpm 45186
Description: A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mptelpm.b ((𝜑𝑥𝐴) → 𝐵𝐶)
mptelpm.a (𝜑𝐴𝐷)
mptelpm.c (𝜑𝐶𝑉)
mptelpm.d (𝜑𝐷𝑊)
Assertion
Ref Expression
mptelpm (𝜑 → (𝑥𝐴𝐵) ∈ (𝐶pm 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem mptelpm
StepHypRef Expression
1 mptelpm.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝐶)
21fmpttd 7134 . . . 4 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
3 eqid 2736 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43, 1dmmptd 6712 . . . . . 6 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
54eqcomd 2742 . . . . 5 (𝜑𝐴 = dom (𝑥𝐴𝐵))
65feq2d 6721 . . . 4 (𝜑 → ((𝑥𝐴𝐵):𝐴𝐶 ↔ (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶))
72, 6mpbid 232 . . 3 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶)
8 mptelpm.a . . . 4 (𝜑𝐴𝐷)
94, 8eqsstrd 4017 . . 3 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝐷)
107, 9jca 511 . 2 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶 ∧ dom (𝑥𝐴𝐵) ⊆ 𝐷))
11 mptelpm.c . . 3 (𝜑𝐶𝑉)
12 mptelpm.d . . 3 (𝜑𝐷𝑊)
13 elpm2g 8885 . . 3 ((𝐶𝑉𝐷𝑊) → ((𝑥𝐴𝐵) ∈ (𝐶pm 𝐷) ↔ ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶 ∧ dom (𝑥𝐴𝐵) ⊆ 𝐷)))
1411, 12, 13syl2anc 584 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ (𝐶pm 𝐷) ↔ ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶 ∧ dom (𝑥𝐴𝐵) ⊆ 𝐷)))
1510, 14mpbird 257 1 (𝜑 → (𝑥𝐴𝐵) ∈ (𝐶pm 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  wss 3950  cmpt 5224  dom cdm 5684  wf 6556  (class class class)co 7432  pm cpm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-pm 8870
This theorem is referenced by:  dvnmptconst  45961  dvnmul  45963
  Copyright terms: Public domain W3C validator