| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mptelpm | Structured version Visualization version GIF version | ||
| Description: A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| mptelpm.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| mptelpm.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐷) |
| mptelpm.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| mptelpm.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| mptelpm | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptelpm.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | fmpttd 7048 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 3 | eqid 2731 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3, 1 | dmmptd 6626 | . . . . . 6 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 5 | 4 | eqcomd 2737 | . . . . 5 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 6 | 5 | feq2d 6635 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶)) |
| 7 | 2, 6 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶) |
| 8 | mptelpm.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐷) | |
| 9 | 4, 8 | eqsstrd 3969 | . . 3 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐷) |
| 10 | 7, 9 | jca 511 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶 ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐷)) |
| 11 | mptelpm.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 12 | mptelpm.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 13 | elpm2g 8768 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶 ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐷))) | |
| 14 | 11, 12, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶 ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐷))) |
| 15 | 10, 14 | mpbird 257 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3902 ↦ cmpt 5172 dom cdm 5616 ⟶wf 6477 (class class class)co 7346 ↑pm cpm 8751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-pm 8753 |
| This theorem is referenced by: dvnmptconst 45978 dvnmul 45980 |
| Copyright terms: Public domain | W3C validator |