Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptelpm Structured version   Visualization version   GIF version

Theorem mptelpm 45119
Description: A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mptelpm.b ((𝜑𝑥𝐴) → 𝐵𝐶)
mptelpm.a (𝜑𝐴𝐷)
mptelpm.c (𝜑𝐶𝑉)
mptelpm.d (𝜑𝐷𝑊)
Assertion
Ref Expression
mptelpm (𝜑 → (𝑥𝐴𝐵) ∈ (𝐶pm 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem mptelpm
StepHypRef Expression
1 mptelpm.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝐶)
21fmpttd 7135 . . . 4 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
3 eqid 2735 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43, 1dmmptd 6714 . . . . . 6 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
54eqcomd 2741 . . . . 5 (𝜑𝐴 = dom (𝑥𝐴𝐵))
65feq2d 6723 . . . 4 (𝜑 → ((𝑥𝐴𝐵):𝐴𝐶 ↔ (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶))
72, 6mpbid 232 . . 3 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶)
8 mptelpm.a . . . 4 (𝜑𝐴𝐷)
94, 8eqsstrd 4034 . . 3 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝐷)
107, 9jca 511 . 2 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶 ∧ dom (𝑥𝐴𝐵) ⊆ 𝐷))
11 mptelpm.c . . 3 (𝜑𝐶𝑉)
12 mptelpm.d . . 3 (𝜑𝐷𝑊)
13 elpm2g 8883 . . 3 ((𝐶𝑉𝐷𝑊) → ((𝑥𝐴𝐵) ∈ (𝐶pm 𝐷) ↔ ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶 ∧ dom (𝑥𝐴𝐵) ⊆ 𝐷)))
1411, 12, 13syl2anc 584 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ (𝐶pm 𝐷) ↔ ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶 ∧ dom (𝑥𝐴𝐵) ⊆ 𝐷)))
1510, 14mpbird 257 1 (𝜑 → (𝑥𝐴𝐵) ∈ (𝐶pm 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  wss 3963  cmpt 5231  dom cdm 5689  wf 6559  (class class class)co 7431  pm cpm 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-pm 8868
This theorem is referenced by:  dvnmptconst  45897  dvnmul  45899
  Copyright terms: Public domain W3C validator