![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptelpm | Structured version Visualization version GIF version |
Description: A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
mptelpm.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
mptelpm.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐷) |
mptelpm.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
mptelpm.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
Ref | Expression |
---|---|
mptelpm | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptelpm.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | 1 | fmpttd 7109 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
3 | eqid 2726 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3, 1 | dmmptd 6688 | . . . . . 6 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
5 | 4 | eqcomd 2732 | . . . . 5 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
6 | 5 | feq2d 6696 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶)) |
7 | 2, 6 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶) |
8 | mptelpm.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐷) | |
9 | 4, 8 | eqsstrd 4015 | . . 3 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐷) |
10 | 7, 9 | jca 511 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶 ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐷)) |
11 | mptelpm.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
12 | mptelpm.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
13 | elpm2g 8837 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶 ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐷))) | |
14 | 11, 12, 13 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶 ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐷))) |
15 | 10, 14 | mpbird 257 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ⊆ wss 3943 ↦ cmpt 5224 dom cdm 5669 ⟶wf 6532 (class class class)co 7404 ↑pm cpm 8820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-pm 8822 |
This theorem is referenced by: dvnmptconst 45211 dvnmul 45213 |
Copyright terms: Public domain | W3C validator |