Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptelpm Structured version   Visualization version   GIF version

Theorem mptelpm 45163
Description: A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mptelpm.b ((𝜑𝑥𝐴) → 𝐵𝐶)
mptelpm.a (𝜑𝐴𝐷)
mptelpm.c (𝜑𝐶𝑉)
mptelpm.d (𝜑𝐷𝑊)
Assertion
Ref Expression
mptelpm (𝜑 → (𝑥𝐴𝐵) ∈ (𝐶pm 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem mptelpm
StepHypRef Expression
1 mptelpm.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝐶)
21fmpttd 7089 . . . 4 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
3 eqid 2730 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43, 1dmmptd 6665 . . . . . 6 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
54eqcomd 2736 . . . . 5 (𝜑𝐴 = dom (𝑥𝐴𝐵))
65feq2d 6674 . . . 4 (𝜑 → ((𝑥𝐴𝐵):𝐴𝐶 ↔ (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶))
72, 6mpbid 232 . . 3 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶)
8 mptelpm.a . . . 4 (𝜑𝐴𝐷)
94, 8eqsstrd 3983 . . 3 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝐷)
107, 9jca 511 . 2 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶 ∧ dom (𝑥𝐴𝐵) ⊆ 𝐷))
11 mptelpm.c . . 3 (𝜑𝐶𝑉)
12 mptelpm.d . . 3 (𝜑𝐷𝑊)
13 elpm2g 8819 . . 3 ((𝐶𝑉𝐷𝑊) → ((𝑥𝐴𝐵) ∈ (𝐶pm 𝐷) ↔ ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶 ∧ dom (𝑥𝐴𝐵) ⊆ 𝐷)))
1411, 12, 13syl2anc 584 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ (𝐶pm 𝐷) ↔ ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶𝐶 ∧ dom (𝑥𝐴𝐵) ⊆ 𝐷)))
1510, 14mpbird 257 1 (𝜑 → (𝑥𝐴𝐵) ∈ (𝐶pm 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wss 3916  cmpt 5190  dom cdm 5640  wf 6509  (class class class)co 7389  pm cpm 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-pm 8804
This theorem is referenced by:  dvnmptconst  45932  dvnmul  45934
  Copyright terms: Public domain W3C validator