Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptelpm | Structured version Visualization version GIF version |
Description: A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
mptelpm.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
mptelpm.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐷) |
mptelpm.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
mptelpm.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
Ref | Expression |
---|---|
mptelpm | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptelpm.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | 1 | fmpttd 7046 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
3 | eqid 2736 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3, 1 | dmmptd 6630 | . . . . . 6 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
5 | 4 | eqcomd 2742 | . . . . 5 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
6 | 5 | feq2d 6638 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶)) |
7 | 2, 6 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶) |
8 | mptelpm.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐷) | |
9 | 4, 8 | eqsstrd 3970 | . . 3 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐷) |
10 | 7, 9 | jca 512 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶 ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐷)) |
11 | mptelpm.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
12 | mptelpm.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
13 | elpm2g 8704 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶 ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐷))) | |
14 | 11, 12, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶𝐶 ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐷))) |
15 | 10, 14 | mpbird 256 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 ⊆ wss 3898 ↦ cmpt 5176 dom cdm 5621 ⟶wf 6476 (class class class)co 7338 ↑pm cpm 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-fv 6488 df-ov 7341 df-oprab 7342 df-mpo 7343 df-pm 8690 |
This theorem is referenced by: dvnmptconst 43870 dvnmul 43872 |
Copyright terms: Public domain | W3C validator |