| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgr2v2eedg | Structured version Visualization version GIF version | ||
| Description: The set of edges in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
| Ref | Expression |
|---|---|
| umgr2v2evtx.g | ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 |
| Ref | Expression |
|---|---|
| umgr2v2eedg | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval 29025 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 3 | umgr2v2evtx.g | . . . 4 ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 | |
| 4 | 3 | umgr2v2eiedg 29500 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘𝐺) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
| 5 | 4 | rneqd 5878 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ran (iEdg‘𝐺) = ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
| 6 | c0ex 11103 | . . . . 5 ⊢ 0 ∈ V | |
| 7 | 1ex 11105 | . . . . 5 ⊢ 1 ∈ V | |
| 8 | rnpropg 6169 | . . . . 5 ⊢ ((0 ∈ V ∧ 1 ∈ V) → ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {{𝐴, 𝐵}, {𝐴, 𝐵}}) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . 4 ⊢ ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {{𝐴, 𝐵}, {𝐴, 𝐵}} |
| 10 | 9 | a1i 11 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {{𝐴, 𝐵}, {𝐴, 𝐵}}) |
| 11 | dfsn2 4589 | . . 3 ⊢ {{𝐴, 𝐵}} = {{𝐴, 𝐵}, {𝐴, 𝐵}} | |
| 12 | 10, 11 | eqtr4di 2784 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {{𝐴, 𝐵}}) |
| 13 | 2, 5, 12 | 3eqtrd 2770 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 {cpr 4578 〈cop 4582 ran crn 5617 ‘cfv 6481 0cc0 11003 1c1 11004 iEdgciedg 28973 Edgcedg 29023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-i2m1 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-2nd 7922 df-iedg 28975 df-edg 29024 |
| This theorem is referenced by: umgr2v2enb1 29503 |
| Copyright terms: Public domain | W3C validator |