Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgr2v2eedg | Structured version Visualization version GIF version |
Description: The set of edges in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
umgr2v2evtx.g | ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 |
Ref | Expression |
---|---|
umgr2v2eedg | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 27707 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
3 | umgr2v2evtx.g | . . . 4 ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 | |
4 | 3 | umgr2v2eiedg 28178 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘𝐺) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
5 | 4 | rneqd 5883 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ran (iEdg‘𝐺) = ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
6 | c0ex 11074 | . . . . 5 ⊢ 0 ∈ V | |
7 | 1ex 11076 | . . . . 5 ⊢ 1 ∈ V | |
8 | rnpropg 6164 | . . . . 5 ⊢ ((0 ∈ V ∧ 1 ∈ V) → ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {{𝐴, 𝐵}, {𝐴, 𝐵}}) | |
9 | 6, 7, 8 | mp2an 690 | . . . 4 ⊢ ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {{𝐴, 𝐵}, {𝐴, 𝐵}} |
10 | 9 | a1i 11 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {{𝐴, 𝐵}, {𝐴, 𝐵}}) |
11 | dfsn2 4590 | . . 3 ⊢ {{𝐴, 𝐵}} = {{𝐴, 𝐵}, {𝐴, 𝐵}} | |
12 | 10, 11 | eqtr4di 2795 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {{𝐴, 𝐵}}) |
13 | 2, 5, 12 | 3eqtrd 2781 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3442 {csn 4577 {cpr 4579 〈cop 4583 ran crn 5625 ‘cfv 6483 0cc0 10976 1c1 10977 iEdgciedg 27655 Edgcedg 27705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-un 7654 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-mulcl 11038 ax-i2m1 11044 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-iota 6435 df-fun 6485 df-fv 6491 df-2nd 7904 df-iedg 27657 df-edg 27706 |
This theorem is referenced by: umgr2v2enb1 28181 |
Copyright terms: Public domain | W3C validator |