![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgr2v2eedg | Structured version Visualization version GIF version |
Description: The set of edges in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
umgr2v2evtx.g | ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 |
Ref | Expression |
---|---|
umgr2v2eedg | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 26397 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
3 | umgr2v2evtx.g | . . . 4 ⊢ 𝐺 = 〈𝑉, {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}〉 | |
4 | 3 | umgr2v2eiedg 26871 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (iEdg‘𝐺) = {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
5 | 4 | rneqd 5598 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ran (iEdg‘𝐺) = ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉}) |
6 | c0ex 10370 | . . . . 5 ⊢ 0 ∈ V | |
7 | 1ex 10372 | . . . . 5 ⊢ 1 ∈ V | |
8 | rnpropg 5869 | . . . . 5 ⊢ ((0 ∈ V ∧ 1 ∈ V) → ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {{𝐴, 𝐵}, {𝐴, 𝐵}}) | |
9 | 6, 7, 8 | mp2an 682 | . . . 4 ⊢ ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {{𝐴, 𝐵}, {𝐴, 𝐵}} |
10 | 9 | a1i 11 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {{𝐴, 𝐵}, {𝐴, 𝐵}}) |
11 | dfsn2 4411 | . . 3 ⊢ {{𝐴, 𝐵}} = {{𝐴, 𝐵}, {𝐴, 𝐵}} | |
12 | 10, 11 | syl6eqr 2832 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ran {〈0, {𝐴, 𝐵}〉, 〈1, {𝐴, 𝐵}〉} = {{𝐴, 𝐵}}) |
13 | 2, 5, 12 | 3eqtrd 2818 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 Vcvv 3398 {csn 4398 {cpr 4400 〈cop 4404 ran crn 5356 ‘cfv 6135 0cc0 10272 1c1 10273 iEdgciedg 26345 Edgcedg 26395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-mulcl 10334 ax-i2m1 10340 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-iota 6099 df-fun 6137 df-fv 6143 df-2nd 7446 df-iedg 26347 df-edg 26396 |
This theorem is referenced by: umgr2v2enb1 26874 |
Copyright terms: Public domain | W3C validator |