MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2eedg Structured version   Visualization version   GIF version

Theorem umgr2v2eedg 28179
Description: The set of edges in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2eedg ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}})

Proof of Theorem umgr2v2eedg
StepHypRef Expression
1 edgval 27707 . . 3 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . 2 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Edg‘𝐺) = ran (iEdg‘𝐺))
3 umgr2v2evtx.g . . . 4 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
43umgr2v2eiedg 28178 . . 3 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
54rneqd 5883 . 2 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ran (iEdg‘𝐺) = ran {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
6 c0ex 11074 . . . . 5 0 ∈ V
7 1ex 11076 . . . . 5 1 ∈ V
8 rnpropg 6164 . . . . 5 ((0 ∈ V ∧ 1 ∈ V) → ran {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} = {{𝐴, 𝐵}, {𝐴, 𝐵}})
96, 7, 8mp2an 690 . . . 4 ran {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} = {{𝐴, 𝐵}, {𝐴, 𝐵}}
109a1i 11 . . 3 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ran {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} = {{𝐴, 𝐵}, {𝐴, 𝐵}})
11 dfsn2 4590 . . 3 {{𝐴, 𝐵}} = {{𝐴, 𝐵}, {𝐴, 𝐵}}
1210, 11eqtr4di 2795 . 2 ((𝑉𝑊𝐴𝑉𝐵𝑉) → ran {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩} = {{𝐴, 𝐵}})
132, 5, 123eqtrd 2781 1 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Edg‘𝐺) = {{𝐴, 𝐵}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3442  {csn 4577  {cpr 4579  cop 4583  ran crn 5625  cfv 6483  0cc0 10976  1c1 10977  iEdgciedg 27655  Edgcedg 27705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376  ax-un 7654  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-mulcl 11038  ax-i2m1 11044
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-iota 6435  df-fun 6485  df-fv 6491  df-2nd 7904  df-iedg 27657  df-edg 27706
This theorem is referenced by:  umgr2v2enb1  28181
  Copyright terms: Public domain W3C validator