MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  friendshipgt3 Structured version   Visualization version   GIF version

Theorem friendshipgt3 30346
Description: The friendship theorem for big graphs: In every finite friendship graph with order greater than 3 there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
friendshipgt3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑤,𝐺,𝑣   𝑤,𝑉

Proof of Theorem friendshipgt3
Dummy variables 𝑘 𝑚 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrreggt1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2729 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2frgrregorufrg 30274 . . 3 (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
433ad2ant1 1133 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
51frgrogt3nreg 30345 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
6 frgrusgr 30209 . . . . . . 7 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
76anim1i 615 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
81isfusgr 29267 . . . . . 6 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
97, 8sylibr 234 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
1093adant3 1132 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝐺 ∈ FinUSGraph)
11 0red 11118 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 ∈ ℝ)
12 3re 12208 . . . . . . . . 9 3 ∈ ℝ
1312a1i 11 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 3 ∈ ℝ)
14 hashcl 14263 . . . . . . . . . 10 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
1514nn0red 12446 . . . . . . . . 9 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℝ)
1615adantr 480 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ∈ ℝ)
17 3pos 12233 . . . . . . . . 9 0 < 3
1817a1i 11 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 < 3)
19 simpr 484 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 3 < (♯‘𝑉))
2011, 13, 16, 18, 19lttrd 11277 . . . . . . 7 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 < (♯‘𝑉))
2120gt0ne0d 11684 . . . . . 6 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 0)
22 hasheq0 14270 . . . . . . . 8 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
2322adantr 480 . . . . . . 7 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
2423necon3bid 2969 . . . . . 6 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
2521, 24mpbid 232 . . . . 5 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ≠ ∅)
26253adant1 1130 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ≠ ∅)
271fusgrn0degnn0 29449 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚)
2810, 26, 27syl2anc 584 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚)
29 r19.26 3089 . . . . . . . 8 (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) ↔ (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘))
30 simpllr 775 . . . . . . . . . 10 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → 𝑚 ∈ ℕ0)
31 fveqeq2 6831 . . . . . . . . . . . . . . 15 (𝑢 = 𝑡 → (((VtxDeg‘𝐺)‘𝑢) = 𝑚 ↔ ((VtxDeg‘𝐺)‘𝑡) = 𝑚))
3231rspcev 3577 . . . . . . . . . . . . . 14 ((𝑡𝑉 ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) → ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚)
3332ad4ant13 751 . . . . . . . . . . . . 13 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚)
34 ornld 1061 . . . . . . . . . . . . 13 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3533, 34syl 17 . . . . . . . . . . . 12 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3635adantr 480 . . . . . . . . . . 11 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
37 eqeq2 2741 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (((VtxDeg‘𝐺)‘𝑢) = 𝑘 ↔ ((VtxDeg‘𝐺)‘𝑢) = 𝑚))
3837rexbidv 3153 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 ↔ ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚))
39 breq2 5096 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐺 RegUSGraph 𝑘𝐺 RegUSGraph 𝑚))
4039orbi1d 916 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4138, 40imbi12d 344 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ↔ (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
4239notbid 318 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (¬ 𝐺 RegUSGraph 𝑘 ↔ ¬ 𝐺 RegUSGraph 𝑚))
4341, 42anbi12d 632 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) ↔ ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚)))
4443imbi1d 341 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4544adantl 481 . . . . . . . . . . 11 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → ((((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4636, 45mpbird 257 . . . . . . . . . 10 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4730, 46rspcimdv 3567 . . . . . . . . 9 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4847com12 32 . . . . . . . 8 (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4929, 48sylbir 235 . . . . . . 7 ((∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
5049expcom 413 . . . . . 6 (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
5150com13 88 . . . . 5 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
5251exp31 419 . . . 4 ((𝑡𝑉𝑚 ∈ ℕ0) → (((VtxDeg‘𝐺)‘𝑡) = 𝑚 → ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))))
5352rexlimivv 3171 . . 3 (∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚 → ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
5428, 53mpcom 38 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
554, 5, 54mp2d 49 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3900  c0 4284  {csn 4577  {cpr 4579   class class class wbr 5092  cfv 6482  Fincfn 8872  cr 11008  0cc0 11009   < clt 11149  3c3 12184  0cn0 12384  chash 14237  Vtxcvtx 28945  Edgcedg 28996  USGraphcusgr 29098  FinUSGraphcfusgr 29265  VtxDegcvtxdg 29415   RegUSGraph crusgr 29506   FriendGraph cfrgr 30206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-xadd 13015  df-ico 13254  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578  df-reps 14675  df-csh 14695  df-s2 14755  df-s3 14756  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-vtx 28947  df-iedg 28948  df-edg 28997  df-uhgr 29007  df-ushgr 29008  df-upgr 29031  df-umgr 29032  df-uspgr 29099  df-usgr 29100  df-fusgr 29266  df-nbgr 29282  df-vtxdg 29416  df-rgr 29507  df-rusgr 29508  df-wlks 29549  df-wlkson 29550  df-trls 29640  df-trlson 29641  df-pths 29663  df-spths 29664  df-pthson 29665  df-spthson 29666  df-wwlks 29779  df-wwlksn 29780  df-wwlksnon 29781  df-wspthsn 29782  df-wspthsnon 29783  df-clwwlk 29930  df-clwwlkn 29973  df-clwwlknon 30036  df-conngr 30135  df-frgr 30207
This theorem is referenced by:  friendship  30347
  Copyright terms: Public domain W3C validator