Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  friendshipgt3 Structured version   Visualization version   GIF version

Theorem friendshipgt3 28162
 Description: The friendship theorem for big graphs: In every finite friendship graph with order greater than 3 there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
friendshipgt3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑤,𝐺,𝑣   𝑤,𝑉

Proof of Theorem friendshipgt3
Dummy variables 𝑘 𝑚 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrreggt1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2820 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2frgrregorufrg 28090 . . 3 (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
433ad2ant1 1129 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
51frgrogt3nreg 28161 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
6 frgrusgr 28025 . . . . . . 7 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
76anim1i 616 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
81isfusgr 27087 . . . . . 6 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
97, 8sylibr 236 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
1093adant3 1128 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝐺 ∈ FinUSGraph)
11 0red 10622 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 ∈ ℝ)
12 3re 11696 . . . . . . . . 9 3 ∈ ℝ
1312a1i 11 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 3 ∈ ℝ)
14 hashcl 13702 . . . . . . . . . 10 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
1514nn0red 11935 . . . . . . . . 9 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℝ)
1615adantr 483 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ∈ ℝ)
17 3pos 11721 . . . . . . . . 9 0 < 3
1817a1i 11 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 < 3)
19 simpr 487 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 3 < (♯‘𝑉))
2011, 13, 16, 18, 19lttrd 10779 . . . . . . 7 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 < (♯‘𝑉))
2120gt0ne0d 11182 . . . . . 6 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 0)
22 hasheq0 13709 . . . . . . . 8 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
2322adantr 483 . . . . . . 7 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
2423necon3bid 3050 . . . . . 6 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
2521, 24mpbid 234 . . . . 5 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ≠ ∅)
26253adant1 1126 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ≠ ∅)
271fusgrn0degnn0 27268 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚)
2810, 26, 27syl2anc 586 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚)
29 r19.26 3157 . . . . . . . 8 (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) ↔ (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘))
30 simpllr 774 . . . . . . . . . 10 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → 𝑚 ∈ ℕ0)
31 fveqeq2 6655 . . . . . . . . . . . . . . 15 (𝑢 = 𝑡 → (((VtxDeg‘𝐺)‘𝑢) = 𝑚 ↔ ((VtxDeg‘𝐺)‘𝑡) = 𝑚))
3231rspcev 3602 . . . . . . . . . . . . . 14 ((𝑡𝑉 ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) → ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚)
3332ad4ant13 749 . . . . . . . . . . . . 13 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚)
34 ornld 1056 . . . . . . . . . . . . 13 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3533, 34syl 17 . . . . . . . . . . . 12 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3635adantr 483 . . . . . . . . . . 11 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
37 eqeq2 2832 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (((VtxDeg‘𝐺)‘𝑢) = 𝑘 ↔ ((VtxDeg‘𝐺)‘𝑢) = 𝑚))
3837rexbidv 3284 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 ↔ ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚))
39 breq2 5046 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐺 RegUSGraph 𝑘𝐺 RegUSGraph 𝑚))
4039orbi1d 913 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4138, 40imbi12d 347 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ↔ (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
4239notbid 320 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (¬ 𝐺 RegUSGraph 𝑘 ↔ ¬ 𝐺 RegUSGraph 𝑚))
4341, 42anbi12d 632 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) ↔ ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚)))
4443imbi1d 344 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4544adantl 484 . . . . . . . . . . 11 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → ((((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4636, 45mpbird 259 . . . . . . . . . 10 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4730, 46rspcimdv 3592 . . . . . . . . 9 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4847com12 32 . . . . . . . 8 (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4929, 48sylbir 237 . . . . . . 7 ((∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
5049expcom 416 . . . . . 6 (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
5150com13 88 . . . . 5 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
5251exp31 422 . . . 4 ((𝑡𝑉𝑚 ∈ ℕ0) → (((VtxDeg‘𝐺)‘𝑡) = 𝑚 → ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))))
5352rexlimivv 3279 . . 3 (∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚 → ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
5428, 53mpcom 38 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
554, 5, 54mp2d 49 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∨ wo 843   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114   ≠ wne 3006  ∀wral 3125  ∃wrex 3126   ∖ cdif 3910  ∅c0 4269  {csn 4543  {cpr 4545   class class class wbr 5042  ‘cfv 6331  Fincfn 8487  ℝcr 10514  0cc0 10515   < clt 10653  3c3 11672  ℕ0cn0 11876  ♯chash 13675  Vtxcvtx 26768  Edgcedg 26819  USGraphcusgr 26921  FinUSGraphcfusgr 27085  VtxDegcvtxdg 27234   RegUSGraph crusgr 27325   FriendGraph cfrgr 28022 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-inf2 9082  ax-ac2 9863  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-disj 5008  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-2o 8081  df-oadd 8084  df-er 8267  df-ec 8269  df-qs 8273  df-map 8386  df-pm 8387  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-sup 8884  df-inf 8885  df-oi 8952  df-dju 9308  df-card 9346  df-ac 9520  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-xnn0 11947  df-z 11961  df-uz 12223  df-rp 12369  df-xadd 12487  df-ico 12723  df-fz 12877  df-fzo 13018  df-fl 13146  df-mod 13222  df-seq 13354  df-exp 13415  df-hash 13676  df-word 13847  df-lsw 13895  df-concat 13903  df-s1 13930  df-substr 13983  df-pfx 14013  df-reps 14111  df-csh 14131  df-s2 14190  df-s3 14191  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-clim 14825  df-sum 15023  df-dvds 15588  df-gcd 15822  df-prm 15994  df-phi 16081  df-vtx 26770  df-iedg 26771  df-edg 26820  df-uhgr 26830  df-ushgr 26831  df-upgr 26854  df-umgr 26855  df-uspgr 26922  df-usgr 26923  df-fusgr 27086  df-nbgr 27102  df-vtxdg 27235  df-rgr 27326  df-rusgr 27327  df-wlks 27368  df-wlkson 27369  df-trls 27461  df-trlson 27462  df-pths 27484  df-spths 27485  df-pthson 27486  df-spthson 27487  df-wwlks 27595  df-wwlksn 27596  df-wwlksnon 27597  df-wspthsn 27598  df-wspthsnon 27599  df-clwwlk 27746  df-clwwlkn 27789  df-clwwlknon 27852  df-conngr 27951  df-frgr 28023 This theorem is referenced by:  friendship  28163
 Copyright terms: Public domain W3C validator