MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  friendshipgt3 Structured version   Visualization version   GIF version

Theorem friendshipgt3 30334
Description: The friendship theorem for big graphs: In every finite friendship graph with order greater than 3 there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
friendshipgt3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑤,𝐺,𝑣   𝑤,𝑉

Proof of Theorem friendshipgt3
Dummy variables 𝑘 𝑚 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrreggt1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2730 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2frgrregorufrg 30262 . . 3 (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
433ad2ant1 1133 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
51frgrogt3nreg 30333 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
6 frgrusgr 30197 . . . . . . 7 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
76anim1i 615 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
81isfusgr 29252 . . . . . 6 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
97, 8sylibr 234 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
1093adant3 1132 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝐺 ∈ FinUSGraph)
11 0red 11184 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 ∈ ℝ)
12 3re 12273 . . . . . . . . 9 3 ∈ ℝ
1312a1i 11 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 3 ∈ ℝ)
14 hashcl 14328 . . . . . . . . . 10 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
1514nn0red 12511 . . . . . . . . 9 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℝ)
1615adantr 480 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ∈ ℝ)
17 3pos 12298 . . . . . . . . 9 0 < 3
1817a1i 11 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 < 3)
19 simpr 484 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 3 < (♯‘𝑉))
2011, 13, 16, 18, 19lttrd 11342 . . . . . . 7 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 < (♯‘𝑉))
2120gt0ne0d 11749 . . . . . 6 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 0)
22 hasheq0 14335 . . . . . . . 8 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
2322adantr 480 . . . . . . 7 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
2423necon3bid 2970 . . . . . 6 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
2521, 24mpbid 232 . . . . 5 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ≠ ∅)
26253adant1 1130 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ≠ ∅)
271fusgrn0degnn0 29434 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚)
2810, 26, 27syl2anc 584 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚)
29 r19.26 3092 . . . . . . . 8 (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) ↔ (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘))
30 simpllr 775 . . . . . . . . . 10 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → 𝑚 ∈ ℕ0)
31 fveqeq2 6870 . . . . . . . . . . . . . . 15 (𝑢 = 𝑡 → (((VtxDeg‘𝐺)‘𝑢) = 𝑚 ↔ ((VtxDeg‘𝐺)‘𝑡) = 𝑚))
3231rspcev 3591 . . . . . . . . . . . . . 14 ((𝑡𝑉 ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) → ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚)
3332ad4ant13 751 . . . . . . . . . . . . 13 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚)
34 ornld 1061 . . . . . . . . . . . . 13 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3533, 34syl 17 . . . . . . . . . . . 12 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3635adantr 480 . . . . . . . . . . 11 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
37 eqeq2 2742 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (((VtxDeg‘𝐺)‘𝑢) = 𝑘 ↔ ((VtxDeg‘𝐺)‘𝑢) = 𝑚))
3837rexbidv 3158 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 ↔ ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚))
39 breq2 5114 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐺 RegUSGraph 𝑘𝐺 RegUSGraph 𝑚))
4039orbi1d 916 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4138, 40imbi12d 344 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ↔ (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
4239notbid 318 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (¬ 𝐺 RegUSGraph 𝑘 ↔ ¬ 𝐺 RegUSGraph 𝑚))
4341, 42anbi12d 632 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) ↔ ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚)))
4443imbi1d 341 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4544adantl 481 . . . . . . . . . . 11 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → ((((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4636, 45mpbird 257 . . . . . . . . . 10 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4730, 46rspcimdv 3581 . . . . . . . . 9 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4847com12 32 . . . . . . . 8 (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4929, 48sylbir 235 . . . . . . 7 ((∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
5049expcom 413 . . . . . 6 (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
5150com13 88 . . . . 5 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
5251exp31 419 . . . 4 ((𝑡𝑉𝑚 ∈ ℕ0) → (((VtxDeg‘𝐺)‘𝑡) = 𝑚 → ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))))
5352rexlimivv 3180 . . 3 (∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚 → ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
5428, 53mpcom 38 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
554, 5, 54mp2d 49 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  c0 4299  {csn 4592  {cpr 4594   class class class wbr 5110  cfv 6514  Fincfn 8921  cr 11074  0cc0 11075   < clt 11215  3c3 12249  0cn0 12449  chash 14302  Vtxcvtx 28930  Edgcedg 28981  USGraphcusgr 29083  FinUSGraphcfusgr 29250  VtxDegcvtxdg 29400   RegUSGraph crusgr 29491   FriendGraph cfrgr 30194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-reps 14741  df-csh 14761  df-s2 14821  df-s3 14822  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-gcd 16472  df-prm 16649  df-phi 16743  df-vtx 28932  df-iedg 28933  df-edg 28982  df-uhgr 28992  df-ushgr 28993  df-upgr 29016  df-umgr 29017  df-uspgr 29084  df-usgr 29085  df-fusgr 29251  df-nbgr 29267  df-vtxdg 29401  df-rgr 29492  df-rusgr 29493  df-wlks 29534  df-wlkson 29535  df-trls 29627  df-trlson 29628  df-pths 29651  df-spths 29652  df-pthson 29653  df-spthson 29654  df-wwlks 29767  df-wwlksn 29768  df-wwlksnon 29769  df-wspthsn 29770  df-wspthsnon 29771  df-clwwlk 29918  df-clwwlkn 29961  df-clwwlknon 30024  df-conngr 30123  df-frgr 30195
This theorem is referenced by:  friendship  30335
  Copyright terms: Public domain W3C validator