MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  friendshipgt3 Structured version   Visualization version   GIF version

Theorem friendshipgt3 28762
Description: The friendship theorem for big graphs: In every finite friendship graph with order greater than 3 there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
friendshipgt3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑤,𝐺,𝑣   𝑤,𝑉

Proof of Theorem friendshipgt3
Dummy variables 𝑘 𝑚 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrreggt1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2738 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2frgrregorufrg 28690 . . 3 (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
433ad2ant1 1132 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
51frgrogt3nreg 28761 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
6 frgrusgr 28625 . . . . . . 7 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
76anim1i 615 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
81isfusgr 27685 . . . . . 6 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
97, 8sylibr 233 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
1093adant3 1131 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝐺 ∈ FinUSGraph)
11 0red 10978 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 ∈ ℝ)
12 3re 12053 . . . . . . . . 9 3 ∈ ℝ
1312a1i 11 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 3 ∈ ℝ)
14 hashcl 14071 . . . . . . . . . 10 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
1514nn0red 12294 . . . . . . . . 9 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℝ)
1615adantr 481 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ∈ ℝ)
17 3pos 12078 . . . . . . . . 9 0 < 3
1817a1i 11 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 < 3)
19 simpr 485 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 3 < (♯‘𝑉))
2011, 13, 16, 18, 19lttrd 11136 . . . . . . 7 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 0 < (♯‘𝑉))
2120gt0ne0d 11539 . . . . . 6 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 0)
22 hasheq0 14078 . . . . . . . 8 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
2322adantr 481 . . . . . . 7 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
2423necon3bid 2988 . . . . . 6 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
2521, 24mpbid 231 . . . . 5 ((𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ≠ ∅)
26253adant1 1129 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ≠ ∅)
271fusgrn0degnn0 27866 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚)
2810, 26, 27syl2anc 584 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚)
29 r19.26 3095 . . . . . . . 8 (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) ↔ (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘))
30 simpllr 773 . . . . . . . . . 10 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → 𝑚 ∈ ℕ0)
31 fveqeq2 6783 . . . . . . . . . . . . . . 15 (𝑢 = 𝑡 → (((VtxDeg‘𝐺)‘𝑢) = 𝑚 ↔ ((VtxDeg‘𝐺)‘𝑡) = 𝑚))
3231rspcev 3561 . . . . . . . . . . . . . 14 ((𝑡𝑉 ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) → ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚)
3332ad4ant13 748 . . . . . . . . . . . . 13 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚)
34 ornld 1059 . . . . . . . . . . . . 13 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3533, 34syl 17 . . . . . . . . . . . 12 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3635adantr 481 . . . . . . . . . . 11 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
37 eqeq2 2750 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (((VtxDeg‘𝐺)‘𝑢) = 𝑘 ↔ ((VtxDeg‘𝐺)‘𝑢) = 𝑚))
3837rexbidv 3226 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 ↔ ∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚))
39 breq2 5078 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐺 RegUSGraph 𝑘𝐺 RegUSGraph 𝑚))
4039orbi1d 914 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4138, 40imbi12d 345 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ↔ (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
4239notbid 318 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (¬ 𝐺 RegUSGraph 𝑘 ↔ ¬ 𝐺 RegUSGraph 𝑚))
4341, 42anbi12d 631 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) ↔ ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚)))
4443imbi1d 342 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4544adantl 482 . . . . . . . . . . 11 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → ((((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) ↔ (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑚 → (𝐺 RegUSGraph 𝑚 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑚) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
4636, 45mpbird 256 . . . . . . . . . 10 (((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) ∧ 𝑘 = 𝑚) → (((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4730, 46rspcimdv 3551 . . . . . . . . 9 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4847com12 32 . . . . . . . 8 (∀𝑘 ∈ ℕ0 ((∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ¬ 𝐺 RegUSGraph 𝑘) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
4929, 48sylbir 234 . . . . . . 7 ((∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) ∧ ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
5049expcom 414 . . . . . 6 (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
5150com13 88 . . . . 5 ((((𝑡𝑉𝑚 ∈ ℕ0) ∧ ((VtxDeg‘𝐺)‘𝑡) = 𝑚) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉))) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
5251exp31 420 . . . 4 ((𝑡𝑉𝑚 ∈ ℕ0) → (((VtxDeg‘𝐺)‘𝑡) = 𝑚 → ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))))
5352rexlimivv 3221 . . 3 (∃𝑡𝑉𝑚 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑡) = 𝑚 → ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
5428, 53mpcom 38 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (∀𝑘 ∈ ℕ0 (∃𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) → (∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))
554, 5, 54mp2d 49 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cdif 3884  c0 4256  {csn 4561  {cpr 4563   class class class wbr 5074  cfv 6433  Fincfn 8733  cr 10870  0cc0 10871   < clt 11009  3c3 12029  0cn0 12233  chash 14044  Vtxcvtx 27366  Edgcedg 27417  USGraphcusgr 27519  FinUSGraphcfusgr 27683  VtxDegcvtxdg 27832   RegUSGraph crusgr 27923   FriendGraph cfrgr 28622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-reps 14482  df-csh 14502  df-s2 14561  df-s3 14562  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-gcd 16202  df-prm 16377  df-phi 16467  df-vtx 27368  df-iedg 27369  df-edg 27418  df-uhgr 27428  df-ushgr 27429  df-upgr 27452  df-umgr 27453  df-uspgr 27520  df-usgr 27521  df-fusgr 27684  df-nbgr 27700  df-vtxdg 27833  df-rgr 27924  df-rusgr 27925  df-wlks 27966  df-wlkson 27967  df-trls 28060  df-trlson 28061  df-pths 28084  df-spths 28085  df-pthson 28086  df-spthson 28087  df-wwlks 28195  df-wwlksn 28196  df-wwlksnon 28197  df-wspthsn 28198  df-wspthsnon 28199  df-clwwlk 28346  df-clwwlkn 28389  df-clwwlknon 28452  df-conngr 28551  df-frgr 28623
This theorem is referenced by:  friendship  28763
  Copyright terms: Public domain W3C validator