MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpscmat Structured version   Visualization version   GIF version

Theorem chpscmat 22752
Description: The characteristic polynomial of a (nonempty!) scalar matrix. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
chp0mat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chp0mat.p 𝑃 = (Poly1𝑅)
chp0mat.a 𝐴 = (𝑁 Mat 𝑅)
chp0mat.x 𝑋 = (var1𝑅)
chp0mat.g 𝐺 = (mulGrp‘𝑃)
chp0mat.m = (.g𝐺)
chpscmat.d 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
chpscmat.s 𝑆 = (algSc‘𝑃)
chpscmat.m = (-g𝑃)
Assertion
Ref Expression
chpscmat (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑋,𝑗   𝐴,𝑐,𝑚   𝐷,𝑛   𝑛,𝐸   𝑛,𝐼   𝑀,𝑐,𝑖,𝑗,𝑚,𝑛   𝑁,𝑐,𝑚,𝑛   𝑃,𝑛   𝑅,𝑐,𝑚,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐶(𝑖,𝑗,𝑚,𝑛,𝑐)   𝐷(𝑖,𝑗,𝑚,𝑐)   𝑃(𝑚,𝑐)   𝑆(𝑖,𝑗,𝑚,𝑐)   𝐸(𝑖,𝑗,𝑚,𝑐)   (𝑖,𝑗,𝑚,𝑛,𝑐)   𝐺(𝑖,𝑗,𝑚,𝑛,𝑐)   𝐼(𝑖,𝑗,𝑚,𝑐)   (𝑖,𝑗,𝑚,𝑛,𝑐)   𝑋(𝑚,𝑛,𝑐)

Proof of Theorem chpscmat
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑁 ∈ Fin)
2 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑅 ∈ CRing)
3 elrabi 3638 . . . . . 6 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → 𝑀 ∈ (Base‘𝐴))
4 chpscmat.d . . . . . 6 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
53, 4eleq2s 2849 . . . . 5 (𝑀𝐷𝑀 ∈ (Base‘𝐴))
653ad2ant1 1133 . . . 4 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → 𝑀 ∈ (Base‘𝐴))
76adantl 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑀 ∈ (Base‘𝐴))
8 oveq 7347 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
98eqeq1d 2733 . . . . . . . . . 10 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1092ralbidv 3196 . . . . . . . . 9 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1110rexbidv 3156 . . . . . . . 8 (𝑚 = 𝑀 → (∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1211elrab 3642 . . . . . . 7 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} ↔ (𝑀 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
13 ifnefalse 4482 . . . . . . . . . . . . . . . 16 (𝑖𝑗 → if(𝑖 = 𝑗, 𝑐, (0g𝑅)) = (0g𝑅))
1413eqeq2d 2742 . . . . . . . . . . . . . . 15 (𝑖𝑗 → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ (𝑖𝑀𝑗) = (0g𝑅)))
1514biimpcd 249 . . . . . . . . . . . . . 14 ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))
1615a1i 11 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1716ralimdva 3144 . . . . . . . . . . . 12 ((((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝑖𝑁) → (∀𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1817ralimdva 3144 . . . . . . . . . . 11 (((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1918ex 412 . . . . . . . . . 10 ((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2019com23 86 . . . . . . . . 9 ((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2120rexlimdva 3133 . . . . . . . 8 (𝑀 ∈ (Base‘𝐴) → (∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2221imp 406 . . . . . . 7 ((𝑀 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2312, 22sylbi 217 . . . . . 6 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2423, 4eleq2s 2849 . . . . 5 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
25243ad2ant1 1133 . . . 4 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2625impcom 407 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))
27 chp0mat.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
28 chp0mat.p . . . 4 𝑃 = (Poly1𝑅)
29 chp0mat.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
30 chpscmat.s . . . 4 𝑆 = (algSc‘𝑃)
31 eqid 2731 . . . 4 (Base‘𝐴) = (Base‘𝐴)
32 chp0mat.x . . . 4 𝑋 = (var1𝑅)
33 eqid 2731 . . . 4 (0g𝑅) = (0g𝑅)
34 chp0mat.g . . . 4 𝐺 = (mulGrp‘𝑃)
35 chpscmat.m . . . 4 = (-g𝑃)
3627, 28, 29, 30, 31, 32, 33, 34, 35chpdmat 22751 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘𝐴)) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
371, 2, 7, 26, 36syl31anc 1375 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
38 id 22 . . . . . . . . . . . 12 (𝑛 = 𝑘𝑛 = 𝑘)
3938, 38oveq12d 7359 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛𝑀𝑛) = (𝑘𝑀𝑘))
4039eqeq1d 2733 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝑛𝑀𝑛) = 𝐸 ↔ (𝑘𝑀𝑘) = 𝐸))
4140rspccv 3569 . . . . . . . . 9 (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
42413ad2ant3 1135 . . . . . . . 8 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
4342adantl 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
4443imp 406 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑘𝑀𝑘) = 𝐸)
4544fveq2d 6821 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑆‘(𝑘𝑀𝑘)) = (𝑆𝐸))
4645oveq2d 7357 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑋 (𝑆‘(𝑘𝑀𝑘))) = (𝑋 (𝑆𝐸)))
4746mpteq2dva 5179 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘)))) = (𝑘𝑁 ↦ (𝑋 (𝑆𝐸))))
4847oveq2d 7357 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))))
4928ply1crng 22106 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
5034crngmgp 20154 . . . . 5 (𝑃 ∈ CRing → 𝐺 ∈ CMnd)
51 cmnmnd 19704 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
5249, 50, 513syl 18 . . . 4 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
5352ad2antlr 727 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝐺 ∈ Mnd)
54 crngring 20158 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5528ply1ring 22155 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5654, 55syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
57 ringgrp 20151 . . . . . . 7 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
5856, 57syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ Grp)
5958ad2antlr 727 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑃 ∈ Grp)
60 eqid 2731 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
6132, 28, 60vr1cl 22125 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
6254, 61syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃))
6362ad2antlr 727 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑋 ∈ (Base‘𝑃))
64 simpr 484 . . . . . . . . . . . 12 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝐼𝑁)
65 eqid 2731 . . . . . . . . . . . . . . . . 17 (Scalar‘𝑃) = (Scalar‘𝑃)
6656ad2antll 729 . . . . . . . . . . . . . . . . . 18 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑃 ∈ Ring)
6766adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑃 ∈ Ring)
6828ply1lmod 22159 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
6954, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
7069ad2antll 729 . . . . . . . . . . . . . . . . . 18 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑃 ∈ LMod)
7170adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑃 ∈ LMod)
72 eqid 2731 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
7330, 65, 67, 71, 72, 60asclf 21814 . . . . . . . . . . . . . . . 16 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
745adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑀 ∈ (Base‘𝐴))
7574adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑀 ∈ (Base‘𝐴))
76 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
7729, 76matecl 22335 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
7864, 64, 75, 77syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
7928ply1sca 22160 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
8079ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑅 = (Scalar‘𝑃))
8180adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑅 = (Scalar‘𝑃))
8281eqcomd 2737 . . . . . . . . . . . . . . . . . 18 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (Scalar‘𝑃) = 𝑅)
8382fveq2d 6821 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
8478, 83eleqtrrd 2834 . . . . . . . . . . . . . . . 16 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝐼𝑀𝐼) ∈ (Base‘(Scalar‘𝑃)))
8573, 84ffvelcdmd 7013 . . . . . . . . . . . . . . 15 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝑆‘(𝐼𝑀𝐼)) ∈ (Base‘𝑃))
86 fveq2 6817 . . . . . . . . . . . . . . . . 17 (𝐸 = (𝐼𝑀𝐼) → (𝑆𝐸) = (𝑆‘(𝐼𝑀𝐼)))
8786eqcoms 2739 . . . . . . . . . . . . . . . 16 ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) = (𝑆‘(𝐼𝑀𝐼)))
8887eleq1d 2816 . . . . . . . . . . . . . . 15 ((𝐼𝑀𝐼) = 𝐸 → ((𝑆𝐸) ∈ (Base‘𝑃) ↔ (𝑆‘(𝐼𝑀𝐼)) ∈ (Base‘𝑃)))
8985, 88syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9089adantr 480 . . . . . . . . . . . . 13 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
91 id 22 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝐼𝑛 = 𝐼)
9291, 91oveq12d 7359 . . . . . . . . . . . . . . . 16 (𝑛 = 𝐼 → (𝑛𝑀𝑛) = (𝐼𝑀𝐼))
9392eqeq1d 2733 . . . . . . . . . . . . . . 15 (𝑛 = 𝐼 → ((𝑛𝑀𝑛) = 𝐸 ↔ (𝐼𝑀𝐼) = 𝐸))
9493imbi1d 341 . . . . . . . . . . . . . 14 (𝑛 = 𝐼 → (((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)) ↔ ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9594adantl 481 . . . . . . . . . . . . 13 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → (((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)) ↔ ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9690, 95mpbird 257 . . . . . . . . . . . 12 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → ((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9764, 96rspcimdv 3562 . . . . . . . . . . 11 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9897ex 412 . . . . . . . . . 10 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (𝐼𝑁 → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9998com23 86 . . . . . . . . 9 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝐼𝑁 → (𝑆𝐸) ∈ (Base‘𝑃))))
10099ex 412 . . . . . . . 8 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝐼𝑁 → (𝑆𝐸) ∈ (Base‘𝑃)))))
101100com24 95 . . . . . . 7 (𝑀𝐷 → (𝐼𝑁 → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑆𝐸) ∈ (Base‘𝑃)))))
1021013imp 1110 . . . . . 6 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑆𝐸) ∈ (Base‘𝑃)))
103102impcom 407 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑆𝐸) ∈ (Base‘𝑃))
10460, 35grpsubcl 18928 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆𝐸) ∈ (Base‘𝑃)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝑃))
10559, 63, 103, 104syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝑃))
10634, 60mgpbas 20058 . . . 4 (Base‘𝑃) = (Base‘𝐺)
107105, 106eleqtrdi 2841 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝐺))
108 eqid 2731 . . . 4 (Base‘𝐺) = (Base‘𝐺)
109 chp0mat.m . . . 4 = (.g𝐺)
110108, 109gsumconst 19841 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ (𝑋 (𝑆𝐸)) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
11153, 1, 107, 110syl3anc 1373 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
11237, 48, 1113eqtrd 2770 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  ifcif 4470  cmpt 5167  cfv 6476  (class class class)co 7341  Fincfn 8864  chash 14232  Basecbs 17115  Scalarcsca 17159  0gc0g 17338   Σg cgsu 17339  Mndcmnd 18637  Grpcgrp 18841  -gcsg 18843  .gcmg 18975  CMndccmn 19687  mulGrpcmgp 20053  Ringcrg 20146  CRingccrg 20147  LModclmod 20788  algSccascl 21784  var1cv1 22083  Poly1cpl1 22084   Mat cmat 22317   CharPlyMat cchpmat 22736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-addf 11080  ax-mulf 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-ot 4580  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-word 14416  df-lsw 14465  df-concat 14473  df-s1 14499  df-substr 14544  df-pfx 14574  df-splice 14652  df-reverse 14661  df-s2 14750  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-efmnd 18772  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-gim 19166  df-cntz 19224  df-oppg 19253  df-symg 19277  df-pmtr 19349  df-psgn 19398  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-rhm 20385  df-subrng 20456  df-subrg 20480  df-drng 20641  df-lmod 20790  df-lss 20860  df-sra 21102  df-rgmod 21103  df-cnfld 21287  df-zring 21379  df-zrh 21435  df-dsmm 21664  df-frlm 21679  df-ascl 21787  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-psr1 22087  df-vr1 22088  df-ply1 22089  df-mamu 22301  df-mat 22318  df-mdet 22495  df-mat2pmat 22617  df-chpmat 22737
This theorem is referenced by:  chpscmat0  22753
  Copyright terms: Public domain W3C validator