MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpscmat Structured version   Visualization version   GIF version

Theorem chpscmat 21447
Description: The characteristic polynomial of a (nonempty!) scalar matrix. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
chp0mat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chp0mat.p 𝑃 = (Poly1𝑅)
chp0mat.a 𝐴 = (𝑁 Mat 𝑅)
chp0mat.x 𝑋 = (var1𝑅)
chp0mat.g 𝐺 = (mulGrp‘𝑃)
chp0mat.m = (.g𝐺)
chpscmat.d 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
chpscmat.s 𝑆 = (algSc‘𝑃)
chpscmat.m = (-g𝑃)
Assertion
Ref Expression
chpscmat (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑋,𝑗   𝐴,𝑐,𝑚   𝐷,𝑛   𝑛,𝐸   𝑛,𝐼   𝑀,𝑐,𝑖,𝑗,𝑚,𝑛   𝑁,𝑐,𝑚,𝑛   𝑃,𝑛   𝑅,𝑐,𝑚,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐶(𝑖,𝑗,𝑚,𝑛,𝑐)   𝐷(𝑖,𝑗,𝑚,𝑐)   𝑃(𝑚,𝑐)   𝑆(𝑖,𝑗,𝑚,𝑐)   𝐸(𝑖,𝑗,𝑚,𝑐)   (𝑖,𝑗,𝑚,𝑛,𝑐)   𝐺(𝑖,𝑗,𝑚,𝑛,𝑐)   𝐼(𝑖,𝑗,𝑚,𝑐)   (𝑖,𝑗,𝑚,𝑛,𝑐)   𝑋(𝑚,𝑛,𝑐)

Proof of Theorem chpscmat
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑁 ∈ Fin)
2 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑅 ∈ CRing)
3 elrabi 3623 . . . . . 6 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → 𝑀 ∈ (Base‘𝐴))
4 chpscmat.d . . . . . 6 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
53, 4eleq2s 2908 . . . . 5 (𝑀𝐷𝑀 ∈ (Base‘𝐴))
653ad2ant1 1130 . . . 4 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → 𝑀 ∈ (Base‘𝐴))
76adantl 485 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑀 ∈ (Base‘𝐴))
8 oveq 7141 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
98eqeq1d 2800 . . . . . . . . . 10 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1092ralbidv 3164 . . . . . . . . 9 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1110rexbidv 3256 . . . . . . . 8 (𝑚 = 𝑀 → (∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1211elrab 3628 . . . . . . 7 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} ↔ (𝑀 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
13 ifnefalse 4437 . . . . . . . . . . . . . . . 16 (𝑖𝑗 → if(𝑖 = 𝑗, 𝑐, (0g𝑅)) = (0g𝑅))
1413eqeq2d 2809 . . . . . . . . . . . . . . 15 (𝑖𝑗 → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ (𝑖𝑀𝑗) = (0g𝑅)))
1514biimpcd 252 . . . . . . . . . . . . . 14 ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))
1615a1i 11 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1716ralimdva 3144 . . . . . . . . . . . 12 ((((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝑖𝑁) → (∀𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1817ralimdva 3144 . . . . . . . . . . 11 (((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1918ex 416 . . . . . . . . . 10 ((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2019com23 86 . . . . . . . . 9 ((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2120rexlimdva 3243 . . . . . . . 8 (𝑀 ∈ (Base‘𝐴) → (∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2221imp 410 . . . . . . 7 ((𝑀 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2312, 22sylbi 220 . . . . . 6 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2423, 4eleq2s 2908 . . . . 5 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
25243ad2ant1 1130 . . . 4 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2625impcom 411 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))
27 chp0mat.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
28 chp0mat.p . . . 4 𝑃 = (Poly1𝑅)
29 chp0mat.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
30 chpscmat.s . . . 4 𝑆 = (algSc‘𝑃)
31 eqid 2798 . . . 4 (Base‘𝐴) = (Base‘𝐴)
32 chp0mat.x . . . 4 𝑋 = (var1𝑅)
33 eqid 2798 . . . 4 (0g𝑅) = (0g𝑅)
34 chp0mat.g . . . 4 𝐺 = (mulGrp‘𝑃)
35 chpscmat.m . . . 4 = (-g𝑃)
3627, 28, 29, 30, 31, 32, 33, 34, 35chpdmat 21446 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘𝐴)) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
371, 2, 7, 26, 36syl31anc 1370 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
38 id 22 . . . . . . . . . . . 12 (𝑛 = 𝑘𝑛 = 𝑘)
3938, 38oveq12d 7153 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛𝑀𝑛) = (𝑘𝑀𝑘))
4039eqeq1d 2800 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝑛𝑀𝑛) = 𝐸 ↔ (𝑘𝑀𝑘) = 𝐸))
4140rspccv 3568 . . . . . . . . 9 (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
42413ad2ant3 1132 . . . . . . . 8 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
4342adantl 485 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
4443imp 410 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑘𝑀𝑘) = 𝐸)
4544fveq2d 6649 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑆‘(𝑘𝑀𝑘)) = (𝑆𝐸))
4645oveq2d 7151 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑋 (𝑆‘(𝑘𝑀𝑘))) = (𝑋 (𝑆𝐸)))
4746mpteq2dva 5125 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘)))) = (𝑘𝑁 ↦ (𝑋 (𝑆𝐸))))
4847oveq2d 7151 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))))
4928ply1crng 20827 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
5034crngmgp 19298 . . . . 5 (𝑃 ∈ CRing → 𝐺 ∈ CMnd)
51 cmnmnd 18914 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
5249, 50, 513syl 18 . . . 4 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
5352ad2antlr 726 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝐺 ∈ Mnd)
54 crngring 19302 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5528ply1ring 20877 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5654, 55syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
57 ringgrp 19295 . . . . . . 7 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
5856, 57syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ Grp)
5958ad2antlr 726 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑃 ∈ Grp)
60 eqid 2798 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
6132, 28, 60vr1cl 20846 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
6254, 61syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃))
6362ad2antlr 726 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑋 ∈ (Base‘𝑃))
64 simpr 488 . . . . . . . . . . . 12 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝐼𝑁)
65 eqid 2798 . . . . . . . . . . . . . . . . 17 (Scalar‘𝑃) = (Scalar‘𝑃)
6656ad2antll 728 . . . . . . . . . . . . . . . . . 18 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑃 ∈ Ring)
6766adantr 484 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑃 ∈ Ring)
6828ply1lmod 20881 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
6954, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
7069ad2antll 728 . . . . . . . . . . . . . . . . . 18 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑃 ∈ LMod)
7170adantr 484 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑃 ∈ LMod)
72 eqid 2798 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
7330, 65, 67, 71, 72, 60asclf 20568 . . . . . . . . . . . . . . . 16 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
745adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑀 ∈ (Base‘𝐴))
7574adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑀 ∈ (Base‘𝐴))
76 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
7729, 76matecl 21030 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
7864, 64, 75, 77syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
7928ply1sca 20882 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
8079ad2antll 728 . . . . . . . . . . . . . . . . . . . 20 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑅 = (Scalar‘𝑃))
8180adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑅 = (Scalar‘𝑃))
8281eqcomd 2804 . . . . . . . . . . . . . . . . . 18 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (Scalar‘𝑃) = 𝑅)
8382fveq2d 6649 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
8478, 83eleqtrrd 2893 . . . . . . . . . . . . . . . 16 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝐼𝑀𝐼) ∈ (Base‘(Scalar‘𝑃)))
8573, 84ffvelrnd 6829 . . . . . . . . . . . . . . 15 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝑆‘(𝐼𝑀𝐼)) ∈ (Base‘𝑃))
86 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝐸 = (𝐼𝑀𝐼) → (𝑆𝐸) = (𝑆‘(𝐼𝑀𝐼)))
8786eqcoms 2806 . . . . . . . . . . . . . . . 16 ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) = (𝑆‘(𝐼𝑀𝐼)))
8887eleq1d 2874 . . . . . . . . . . . . . . 15 ((𝐼𝑀𝐼) = 𝐸 → ((𝑆𝐸) ∈ (Base‘𝑃) ↔ (𝑆‘(𝐼𝑀𝐼)) ∈ (Base‘𝑃)))
8985, 88syl5ibrcom 250 . . . . . . . . . . . . . 14 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9089adantr 484 . . . . . . . . . . . . 13 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
91 id 22 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝐼𝑛 = 𝐼)
9291, 91oveq12d 7153 . . . . . . . . . . . . . . . 16 (𝑛 = 𝐼 → (𝑛𝑀𝑛) = (𝐼𝑀𝐼))
9392eqeq1d 2800 . . . . . . . . . . . . . . 15 (𝑛 = 𝐼 → ((𝑛𝑀𝑛) = 𝐸 ↔ (𝐼𝑀𝐼) = 𝐸))
9493imbi1d 345 . . . . . . . . . . . . . 14 (𝑛 = 𝐼 → (((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)) ↔ ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9594adantl 485 . . . . . . . . . . . . 13 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → (((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)) ↔ ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9690, 95mpbird 260 . . . . . . . . . . . 12 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → ((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9764, 96rspcimdv 3561 . . . . . . . . . . 11 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9897ex 416 . . . . . . . . . 10 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (𝐼𝑁 → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9998com23 86 . . . . . . . . 9 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝐼𝑁 → (𝑆𝐸) ∈ (Base‘𝑃))))
10099ex 416 . . . . . . . 8 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝐼𝑁 → (𝑆𝐸) ∈ (Base‘𝑃)))))
101100com24 95 . . . . . . 7 (𝑀𝐷 → (𝐼𝑁 → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑆𝐸) ∈ (Base‘𝑃)))))
1021013imp 1108 . . . . . 6 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑆𝐸) ∈ (Base‘𝑃)))
103102impcom 411 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑆𝐸) ∈ (Base‘𝑃))
10460, 35grpsubcl 18171 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆𝐸) ∈ (Base‘𝑃)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝑃))
10559, 63, 103, 104syl3anc 1368 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝑃))
10634, 60mgpbas 19238 . . . 4 (Base‘𝑃) = (Base‘𝐺)
107105, 106eleqtrdi 2900 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝐺))
108 eqid 2798 . . . 4 (Base‘𝐺) = (Base‘𝐺)
109 chp0mat.m . . . 4 = (.g𝐺)
110108, 109gsumconst 19047 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ (𝑋 (𝑆𝐸)) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
11153, 1, 107, 110syl3anc 1368 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
11237, 48, 1113eqtrd 2837 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  ifcif 4425  cmpt 5110  cfv 6324  (class class class)co 7135  Fincfn 8492  chash 13686  Basecbs 16475  Scalarcsca 16560  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903  Grpcgrp 18095  -gcsg 18097  .gcmg 18216  CMndccmn 18898  mulGrpcmgp 19232  Ringcrg 19290  CRingccrg 19291  LModclmod 19627  algSccascl 20541  var1cv1 20805  Poly1cpl1 20806   Mat cmat 21012   CharPlyMat cchpmat 21431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-reverse 14112  df-s2 14201  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-efmnd 18026  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-gim 18391  df-cntz 18439  df-oppg 18466  df-symg 18488  df-pmtr 18562  df-psgn 18611  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-dsmm 20421  df-frlm 20436  df-ascl 20544  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-psr1 20809  df-vr1 20810  df-ply1 20811  df-mamu 20991  df-mat 21013  df-mdet 21190  df-mat2pmat 21312  df-chpmat 21432
This theorem is referenced by:  chpscmat0  21448
  Copyright terms: Public domain W3C validator