MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpscmat Structured version   Visualization version   GIF version

Theorem chpscmat 22137
Description: The characteristic polynomial of a (nonempty!) scalar matrix. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
chp0mat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chp0mat.p 𝑃 = (Poly1𝑅)
chp0mat.a 𝐴 = (𝑁 Mat 𝑅)
chp0mat.x 𝑋 = (var1𝑅)
chp0mat.g 𝐺 = (mulGrp‘𝑃)
chp0mat.m = (.g𝐺)
chpscmat.d 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
chpscmat.s 𝑆 = (algSc‘𝑃)
chpscmat.m = (-g𝑃)
Assertion
Ref Expression
chpscmat (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑋,𝑗   𝐴,𝑐,𝑚   𝐷,𝑛   𝑛,𝐸   𝑛,𝐼   𝑀,𝑐,𝑖,𝑗,𝑚,𝑛   𝑁,𝑐,𝑚,𝑛   𝑃,𝑛   𝑅,𝑐,𝑚,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐶(𝑖,𝑗,𝑚,𝑛,𝑐)   𝐷(𝑖,𝑗,𝑚,𝑐)   𝑃(𝑚,𝑐)   𝑆(𝑖,𝑗,𝑚,𝑐)   𝐸(𝑖,𝑗,𝑚,𝑐)   (𝑖,𝑗,𝑚,𝑛,𝑐)   𝐺(𝑖,𝑗,𝑚,𝑛,𝑐)   𝐼(𝑖,𝑗,𝑚,𝑐)   (𝑖,𝑗,𝑚,𝑛,𝑐)   𝑋(𝑚,𝑛,𝑐)

Proof of Theorem chpscmat
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑁 ∈ Fin)
2 simplr 767 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑅 ∈ CRing)
3 elrabi 3637 . . . . . 6 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → 𝑀 ∈ (Base‘𝐴))
4 chpscmat.d . . . . . 6 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
53, 4eleq2s 2856 . . . . 5 (𝑀𝐷𝑀 ∈ (Base‘𝐴))
653ad2ant1 1133 . . . 4 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → 𝑀 ∈ (Base‘𝐴))
76adantl 482 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑀 ∈ (Base‘𝐴))
8 oveq 7357 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
98eqeq1d 2738 . . . . . . . . . 10 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1092ralbidv 3210 . . . . . . . . 9 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1110rexbidv 3173 . . . . . . . 8 (𝑚 = 𝑀 → (∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1211elrab 3643 . . . . . . 7 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} ↔ (𝑀 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
13 ifnefalse 4496 . . . . . . . . . . . . . . . 16 (𝑖𝑗 → if(𝑖 = 𝑗, 𝑐, (0g𝑅)) = (0g𝑅))
1413eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑖𝑗 → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ (𝑖𝑀𝑗) = (0g𝑅)))
1514biimpcd 248 . . . . . . . . . . . . . 14 ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))
1615a1i 11 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1716ralimdva 3162 . . . . . . . . . . . 12 ((((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝑖𝑁) → (∀𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1817ralimdva 3162 . . . . . . . . . . 11 (((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1918ex 413 . . . . . . . . . 10 ((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2019com23 86 . . . . . . . . 9 ((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2120rexlimdva 3150 . . . . . . . 8 (𝑀 ∈ (Base‘𝐴) → (∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2221imp 407 . . . . . . 7 ((𝑀 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2312, 22sylbi 216 . . . . . 6 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2423, 4eleq2s 2856 . . . . 5 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
25243ad2ant1 1133 . . . 4 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2625impcom 408 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))
27 chp0mat.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
28 chp0mat.p . . . 4 𝑃 = (Poly1𝑅)
29 chp0mat.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
30 chpscmat.s . . . 4 𝑆 = (algSc‘𝑃)
31 eqid 2736 . . . 4 (Base‘𝐴) = (Base‘𝐴)
32 chp0mat.x . . . 4 𝑋 = (var1𝑅)
33 eqid 2736 . . . 4 (0g𝑅) = (0g𝑅)
34 chp0mat.g . . . 4 𝐺 = (mulGrp‘𝑃)
35 chpscmat.m . . . 4 = (-g𝑃)
3627, 28, 29, 30, 31, 32, 33, 34, 35chpdmat 22136 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘𝐴)) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
371, 2, 7, 26, 36syl31anc 1373 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
38 id 22 . . . . . . . . . . . 12 (𝑛 = 𝑘𝑛 = 𝑘)
3938, 38oveq12d 7369 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛𝑀𝑛) = (𝑘𝑀𝑘))
4039eqeq1d 2738 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝑛𝑀𝑛) = 𝐸 ↔ (𝑘𝑀𝑘) = 𝐸))
4140rspccv 3576 . . . . . . . . 9 (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
42413ad2ant3 1135 . . . . . . . 8 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
4342adantl 482 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
4443imp 407 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑘𝑀𝑘) = 𝐸)
4544fveq2d 6843 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑆‘(𝑘𝑀𝑘)) = (𝑆𝐸))
4645oveq2d 7367 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑋 (𝑆‘(𝑘𝑀𝑘))) = (𝑋 (𝑆𝐸)))
4746mpteq2dva 5203 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘)))) = (𝑘𝑁 ↦ (𝑋 (𝑆𝐸))))
4847oveq2d 7367 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))))
4928ply1crng 21515 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
5034crngmgp 19920 . . . . 5 (𝑃 ∈ CRing → 𝐺 ∈ CMnd)
51 cmnmnd 19532 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
5249, 50, 513syl 18 . . . 4 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
5352ad2antlr 725 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝐺 ∈ Mnd)
54 crngring 19924 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5528ply1ring 21565 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5654, 55syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
57 ringgrp 19917 . . . . . . 7 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
5856, 57syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ Grp)
5958ad2antlr 725 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑃 ∈ Grp)
60 eqid 2736 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
6132, 28, 60vr1cl 21534 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
6254, 61syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃))
6362ad2antlr 725 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑋 ∈ (Base‘𝑃))
64 simpr 485 . . . . . . . . . . . 12 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝐼𝑁)
65 eqid 2736 . . . . . . . . . . . . . . . . 17 (Scalar‘𝑃) = (Scalar‘𝑃)
6656ad2antll 727 . . . . . . . . . . . . . . . . . 18 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑃 ∈ Ring)
6766adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑃 ∈ Ring)
6828ply1lmod 21569 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
6954, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
7069ad2antll 727 . . . . . . . . . . . . . . . . . 18 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑃 ∈ LMod)
7170adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑃 ∈ LMod)
72 eqid 2736 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
7330, 65, 67, 71, 72, 60asclf 21232 . . . . . . . . . . . . . . . 16 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
745adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑀 ∈ (Base‘𝐴))
7574adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑀 ∈ (Base‘𝐴))
76 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
7729, 76matecl 21720 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
7864, 64, 75, 77syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
7928ply1sca 21570 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
8079ad2antll 727 . . . . . . . . . . . . . . . . . . . 20 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑅 = (Scalar‘𝑃))
8180adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑅 = (Scalar‘𝑃))
8281eqcomd 2742 . . . . . . . . . . . . . . . . . 18 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (Scalar‘𝑃) = 𝑅)
8382fveq2d 6843 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
8478, 83eleqtrrd 2841 . . . . . . . . . . . . . . . 16 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝐼𝑀𝐼) ∈ (Base‘(Scalar‘𝑃)))
8573, 84ffvelcdmd 7032 . . . . . . . . . . . . . . 15 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝑆‘(𝐼𝑀𝐼)) ∈ (Base‘𝑃))
86 fveq2 6839 . . . . . . . . . . . . . . . . 17 (𝐸 = (𝐼𝑀𝐼) → (𝑆𝐸) = (𝑆‘(𝐼𝑀𝐼)))
8786eqcoms 2744 . . . . . . . . . . . . . . . 16 ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) = (𝑆‘(𝐼𝑀𝐼)))
8887eleq1d 2822 . . . . . . . . . . . . . . 15 ((𝐼𝑀𝐼) = 𝐸 → ((𝑆𝐸) ∈ (Base‘𝑃) ↔ (𝑆‘(𝐼𝑀𝐼)) ∈ (Base‘𝑃)))
8985, 88syl5ibrcom 246 . . . . . . . . . . . . . 14 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9089adantr 481 . . . . . . . . . . . . 13 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
91 id 22 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝐼𝑛 = 𝐼)
9291, 91oveq12d 7369 . . . . . . . . . . . . . . . 16 (𝑛 = 𝐼 → (𝑛𝑀𝑛) = (𝐼𝑀𝐼))
9392eqeq1d 2738 . . . . . . . . . . . . . . 15 (𝑛 = 𝐼 → ((𝑛𝑀𝑛) = 𝐸 ↔ (𝐼𝑀𝐼) = 𝐸))
9493imbi1d 341 . . . . . . . . . . . . . 14 (𝑛 = 𝐼 → (((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)) ↔ ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9594adantl 482 . . . . . . . . . . . . 13 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → (((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)) ↔ ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9690, 95mpbird 256 . . . . . . . . . . . 12 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → ((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9764, 96rspcimdv 3569 . . . . . . . . . . 11 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9897ex 413 . . . . . . . . . 10 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (𝐼𝑁 → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9998com23 86 . . . . . . . . 9 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝐼𝑁 → (𝑆𝐸) ∈ (Base‘𝑃))))
10099ex 413 . . . . . . . 8 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝐼𝑁 → (𝑆𝐸) ∈ (Base‘𝑃)))))
101100com24 95 . . . . . . 7 (𝑀𝐷 → (𝐼𝑁 → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑆𝐸) ∈ (Base‘𝑃)))))
1021013imp 1111 . . . . . 6 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑆𝐸) ∈ (Base‘𝑃)))
103102impcom 408 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑆𝐸) ∈ (Base‘𝑃))
10460, 35grpsubcl 18780 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆𝐸) ∈ (Base‘𝑃)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝑃))
10559, 63, 103, 104syl3anc 1371 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝑃))
10634, 60mgpbas 19855 . . . 4 (Base‘𝑃) = (Base‘𝐺)
107105, 106eleqtrdi 2848 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝐺))
108 eqid 2736 . . . 4 (Base‘𝐺) = (Base‘𝐺)
109 chp0mat.m . . . 4 = (.g𝐺)
110108, 109gsumconst 19664 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ (𝑋 (𝑆𝐸)) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
11153, 1, 107, 110syl3anc 1371 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
11237, 48, 1113eqtrd 2780 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wral 3062  wrex 3071  {crab 3405  ifcif 4484  cmpt 5186  cfv 6493  (class class class)co 7351  Fincfn 8841  chash 14184  Basecbs 17037  Scalarcsca 17090  0gc0g 17275   Σg cgsu 17276  Mndcmnd 18510  Grpcgrp 18702  -gcsg 18704  .gcmg 18825  CMndccmn 19515  mulGrpcmgp 19849  Ringcrg 19912  CRingccrg 19913  LModclmod 20269  algSccascl 21205  var1cv1 21493  Poly1cpl1 21494   Mat cmat 21700   CharPlyMat cchpmat 22121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-ot 4593  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-of 7609  df-ofr 7610  df-om 7795  df-1st 7913  df-2nd 7914  df-supp 8085  df-tpos 8149  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-2o 8405  df-er 8606  df-map 8725  df-pm 8726  df-ixp 8794  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-fsupp 9264  df-sup 9336  df-oi 9404  df-card 9833  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-4 12176  df-5 12177  df-6 12178  df-7 12179  df-8 12180  df-9 12181  df-n0 12372  df-xnn0 12444  df-z 12458  df-dec 12577  df-uz 12722  df-rp 12870  df-fz 13379  df-fzo 13522  df-seq 13861  df-exp 13922  df-hash 14185  df-word 14357  df-lsw 14405  df-concat 14413  df-s1 14438  df-substr 14483  df-pfx 14513  df-splice 14592  df-reverse 14601  df-s2 14691  df-struct 16973  df-sets 16990  df-slot 17008  df-ndx 17020  df-base 17038  df-ress 17067  df-plusg 17100  df-mulr 17101  df-starv 17102  df-sca 17103  df-vsca 17104  df-ip 17105  df-tset 17106  df-ple 17107  df-ds 17109  df-unif 17110  df-hom 17111  df-cco 17112  df-0g 17277  df-gsum 17278  df-prds 17283  df-pws 17285  df-mre 17420  df-mrc 17421  df-acs 17423  df-mgm 18451  df-sgrp 18500  df-mnd 18511  df-mhm 18555  df-submnd 18556  df-efmnd 18633  df-grp 18705  df-minusg 18706  df-sbg 18707  df-mulg 18826  df-subg 18878  df-ghm 18959  df-gim 19002  df-cntz 19050  df-oppg 19077  df-symg 19102  df-pmtr 19177  df-psgn 19226  df-cmn 19517  df-abl 19518  df-mgp 19850  df-ur 19867  df-ring 19914  df-cring 19915  df-oppr 19996  df-dvdsr 20017  df-unit 20018  df-invr 20048  df-dvr 20059  df-rnghom 20093  df-drng 20134  df-subrg 20167  df-lmod 20271  df-lss 20340  df-sra 20580  df-rgmod 20581  df-cnfld 20744  df-zring 20817  df-zrh 20851  df-dsmm 21085  df-frlm 21100  df-ascl 21208  df-psr 21258  df-mvr 21259  df-mpl 21260  df-opsr 21262  df-psr1 21497  df-vr1 21498  df-ply1 21499  df-mamu 21679  df-mat 21701  df-mdet 21880  df-mat2pmat 22002  df-chpmat 22122
This theorem is referenced by:  chpscmat0  22138
  Copyright terms: Public domain W3C validator