MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpscmat Structured version   Visualization version   GIF version

Theorem chpscmat 22729
Description: The characteristic polynomial of a (nonempty!) scalar matrix. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
chp0mat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chp0mat.p 𝑃 = (Poly1𝑅)
chp0mat.a 𝐴 = (𝑁 Mat 𝑅)
chp0mat.x 𝑋 = (var1𝑅)
chp0mat.g 𝐺 = (mulGrp‘𝑃)
chp0mat.m = (.g𝐺)
chpscmat.d 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
chpscmat.s 𝑆 = (algSc‘𝑃)
chpscmat.m = (-g𝑃)
Assertion
Ref Expression
chpscmat (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑋,𝑗   𝐴,𝑐,𝑚   𝐷,𝑛   𝑛,𝐸   𝑛,𝐼   𝑀,𝑐,𝑖,𝑗,𝑚,𝑛   𝑁,𝑐,𝑚,𝑛   𝑃,𝑛   𝑅,𝑐,𝑚,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐶(𝑖,𝑗,𝑚,𝑛,𝑐)   𝐷(𝑖,𝑗,𝑚,𝑐)   𝑃(𝑚,𝑐)   𝑆(𝑖,𝑗,𝑚,𝑐)   𝐸(𝑖,𝑗,𝑚,𝑐)   (𝑖,𝑗,𝑚,𝑛,𝑐)   𝐺(𝑖,𝑗,𝑚,𝑛,𝑐)   𝐼(𝑖,𝑗,𝑚,𝑐)   (𝑖,𝑗,𝑚,𝑛,𝑐)   𝑋(𝑚,𝑛,𝑐)

Proof of Theorem chpscmat
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑁 ∈ Fin)
2 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑅 ∈ CRing)
3 elrabi 3654 . . . . . 6 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → 𝑀 ∈ (Base‘𝐴))
4 chpscmat.d . . . . . 6 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
53, 4eleq2s 2846 . . . . 5 (𝑀𝐷𝑀 ∈ (Base‘𝐴))
653ad2ant1 1133 . . . 4 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → 𝑀 ∈ (Base‘𝐴))
76adantl 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑀 ∈ (Base‘𝐴))
8 oveq 7393 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
98eqeq1d 2731 . . . . . . . . . 10 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1092ralbidv 3201 . . . . . . . . 9 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1110rexbidv 3157 . . . . . . . 8 (𝑚 = 𝑀 → (∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1211elrab 3659 . . . . . . 7 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} ↔ (𝑀 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
13 ifnefalse 4500 . . . . . . . . . . . . . . . 16 (𝑖𝑗 → if(𝑖 = 𝑗, 𝑐, (0g𝑅)) = (0g𝑅))
1413eqeq2d 2740 . . . . . . . . . . . . . . 15 (𝑖𝑗 → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ (𝑖𝑀𝑗) = (0g𝑅)))
1514biimpcd 249 . . . . . . . . . . . . . 14 ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))
1615a1i 11 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1716ralimdva 3145 . . . . . . . . . . . 12 ((((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝑖𝑁) → (∀𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1817ralimdva 3145 . . . . . . . . . . 11 (((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1918ex 412 . . . . . . . . . 10 ((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2019com23 86 . . . . . . . . 9 ((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2120rexlimdva 3134 . . . . . . . 8 (𝑀 ∈ (Base‘𝐴) → (∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2221imp 406 . . . . . . 7 ((𝑀 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2312, 22sylbi 217 . . . . . 6 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2423, 4eleq2s 2846 . . . . 5 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
25243ad2ant1 1133 . . . 4 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2625impcom 407 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))
27 chp0mat.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
28 chp0mat.p . . . 4 𝑃 = (Poly1𝑅)
29 chp0mat.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
30 chpscmat.s . . . 4 𝑆 = (algSc‘𝑃)
31 eqid 2729 . . . 4 (Base‘𝐴) = (Base‘𝐴)
32 chp0mat.x . . . 4 𝑋 = (var1𝑅)
33 eqid 2729 . . . 4 (0g𝑅) = (0g𝑅)
34 chp0mat.g . . . 4 𝐺 = (mulGrp‘𝑃)
35 chpscmat.m . . . 4 = (-g𝑃)
3627, 28, 29, 30, 31, 32, 33, 34, 35chpdmat 22728 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘𝐴)) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
371, 2, 7, 26, 36syl31anc 1375 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
38 id 22 . . . . . . . . . . . 12 (𝑛 = 𝑘𝑛 = 𝑘)
3938, 38oveq12d 7405 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛𝑀𝑛) = (𝑘𝑀𝑘))
4039eqeq1d 2731 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝑛𝑀𝑛) = 𝐸 ↔ (𝑘𝑀𝑘) = 𝐸))
4140rspccv 3585 . . . . . . . . 9 (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
42413ad2ant3 1135 . . . . . . . 8 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
4342adantl 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
4443imp 406 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑘𝑀𝑘) = 𝐸)
4544fveq2d 6862 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑆‘(𝑘𝑀𝑘)) = (𝑆𝐸))
4645oveq2d 7403 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑋 (𝑆‘(𝑘𝑀𝑘))) = (𝑋 (𝑆𝐸)))
4746mpteq2dva 5200 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘)))) = (𝑘𝑁 ↦ (𝑋 (𝑆𝐸))))
4847oveq2d 7403 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))))
4928ply1crng 22083 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
5034crngmgp 20150 . . . . 5 (𝑃 ∈ CRing → 𝐺 ∈ CMnd)
51 cmnmnd 19727 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
5249, 50, 513syl 18 . . . 4 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
5352ad2antlr 727 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝐺 ∈ Mnd)
54 crngring 20154 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5528ply1ring 22132 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5654, 55syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
57 ringgrp 20147 . . . . . . 7 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
5856, 57syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ Grp)
5958ad2antlr 727 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑃 ∈ Grp)
60 eqid 2729 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
6132, 28, 60vr1cl 22102 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
6254, 61syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃))
6362ad2antlr 727 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑋 ∈ (Base‘𝑃))
64 simpr 484 . . . . . . . . . . . 12 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝐼𝑁)
65 eqid 2729 . . . . . . . . . . . . . . . . 17 (Scalar‘𝑃) = (Scalar‘𝑃)
6656ad2antll 729 . . . . . . . . . . . . . . . . . 18 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑃 ∈ Ring)
6766adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑃 ∈ Ring)
6828ply1lmod 22136 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
6954, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
7069ad2antll 729 . . . . . . . . . . . . . . . . . 18 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑃 ∈ LMod)
7170adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑃 ∈ LMod)
72 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
7330, 65, 67, 71, 72, 60asclf 21791 . . . . . . . . . . . . . . . 16 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
745adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑀 ∈ (Base‘𝐴))
7574adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑀 ∈ (Base‘𝐴))
76 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
7729, 76matecl 22312 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
7864, 64, 75, 77syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
7928ply1sca 22137 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
8079ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑅 = (Scalar‘𝑃))
8180adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑅 = (Scalar‘𝑃))
8281eqcomd 2735 . . . . . . . . . . . . . . . . . 18 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (Scalar‘𝑃) = 𝑅)
8382fveq2d 6862 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
8478, 83eleqtrrd 2831 . . . . . . . . . . . . . . . 16 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝐼𝑀𝐼) ∈ (Base‘(Scalar‘𝑃)))
8573, 84ffvelcdmd 7057 . . . . . . . . . . . . . . 15 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝑆‘(𝐼𝑀𝐼)) ∈ (Base‘𝑃))
86 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝐸 = (𝐼𝑀𝐼) → (𝑆𝐸) = (𝑆‘(𝐼𝑀𝐼)))
8786eqcoms 2737 . . . . . . . . . . . . . . . 16 ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) = (𝑆‘(𝐼𝑀𝐼)))
8887eleq1d 2813 . . . . . . . . . . . . . . 15 ((𝐼𝑀𝐼) = 𝐸 → ((𝑆𝐸) ∈ (Base‘𝑃) ↔ (𝑆‘(𝐼𝑀𝐼)) ∈ (Base‘𝑃)))
8985, 88syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9089adantr 480 . . . . . . . . . . . . 13 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
91 id 22 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝐼𝑛 = 𝐼)
9291, 91oveq12d 7405 . . . . . . . . . . . . . . . 16 (𝑛 = 𝐼 → (𝑛𝑀𝑛) = (𝐼𝑀𝐼))
9392eqeq1d 2731 . . . . . . . . . . . . . . 15 (𝑛 = 𝐼 → ((𝑛𝑀𝑛) = 𝐸 ↔ (𝐼𝑀𝐼) = 𝐸))
9493imbi1d 341 . . . . . . . . . . . . . 14 (𝑛 = 𝐼 → (((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)) ↔ ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9594adantl 481 . . . . . . . . . . . . 13 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → (((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)) ↔ ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9690, 95mpbird 257 . . . . . . . . . . . 12 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → ((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9764, 96rspcimdv 3578 . . . . . . . . . . 11 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9897ex 412 . . . . . . . . . 10 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (𝐼𝑁 → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9998com23 86 . . . . . . . . 9 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝐼𝑁 → (𝑆𝐸) ∈ (Base‘𝑃))))
10099ex 412 . . . . . . . 8 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝐼𝑁 → (𝑆𝐸) ∈ (Base‘𝑃)))))
101100com24 95 . . . . . . 7 (𝑀𝐷 → (𝐼𝑁 → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑆𝐸) ∈ (Base‘𝑃)))))
1021013imp 1110 . . . . . 6 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑆𝐸) ∈ (Base‘𝑃)))
103102impcom 407 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑆𝐸) ∈ (Base‘𝑃))
10460, 35grpsubcl 18952 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆𝐸) ∈ (Base‘𝑃)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝑃))
10559, 63, 103, 104syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝑃))
10634, 60mgpbas 20054 . . . 4 (Base‘𝑃) = (Base‘𝐺)
107105, 106eleqtrdi 2838 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝐺))
108 eqid 2729 . . . 4 (Base‘𝐺) = (Base‘𝐺)
109 chp0mat.m . . . 4 = (.g𝐺)
110108, 109gsumconst 19864 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ (𝑋 (𝑆𝐸)) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
11153, 1, 107, 110syl3anc 1373 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
11237, 48, 1113eqtrd 2768 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = ((♯‘𝑁) (𝑋 (𝑆𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  ifcif 4488  cmpt 5188  cfv 6511  (class class class)co 7387  Fincfn 8918  chash 14295  Basecbs 17179  Scalarcsca 17223  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  Grpcgrp 18865  -gcsg 18867  .gcmg 18999  CMndccmn 19710  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143  LModclmod 20766  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061   Mat cmat 22294   CharPlyMat cchpmat 22713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-reverse 14724  df-s2 14814  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-symg 19300  df-pmtr 19372  df-psgn 19421  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-dsmm 21641  df-frlm 21656  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-mamu 22278  df-mat 22295  df-mdet 22472  df-mat2pmat 22594  df-chpmat 22714
This theorem is referenced by:  chpscmat0  22730
  Copyright terms: Public domain W3C validator