MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nati Structured version   Visualization version   GIF version

Theorem nati 17927
Description: Naturality property of a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
natixp.2 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
natixp.b 𝐵 = (Base‘𝐶)
nati.h 𝐻 = (Hom ‘𝐶)
nati.o · = (comp‘𝐷)
nati.x (𝜑𝑋𝐵)
nati.y (𝜑𝑌𝐵)
nati.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
nati (𝜑 → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋)))

Proof of Theorem nati
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natixp.2 . . . 4 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
2 natrcl.1 . . . . 5 𝑁 = (𝐶 Nat 𝐷)
3 natixp.b . . . . 5 𝐵 = (Base‘𝐶)
4 nati.h . . . . 5 𝐻 = (Hom ‘𝐶)
5 eqid 2730 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
6 nati.o . . . . 5 · = (comp‘𝐷)
72natrcl 17922 . . . . . . . 8 (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
81, 7syl 17 . . . . . . 7 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
98simpld 494 . . . . . 6 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
10 df-br 5111 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylibr 234 . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
128simprd 495 . . . . . 6 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
13 df-br 5111 . . . . . 6 (𝐾(𝐶 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
1412, 13sylibr 234 . . . . 5 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
152, 3, 4, 5, 6, 11, 14isnat 17919 . . . 4 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)(Hom ‘𝐷)(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))))
161, 15mpbid 232 . . 3 (𝜑 → (𝐴X𝑥𝐵 ((𝐹𝑥)(Hom ‘𝐷)(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
1716simprd 495 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))
18 nati.x . . 3 (𝜑𝑋𝐵)
19 nati.y . . . . 5 (𝜑𝑌𝐵)
2019adantr 480 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
21 nati.r . . . . . . 7 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
2221ad2antrr 726 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑅 ∈ (𝑋𝐻𝑌))
23 simplr 768 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋)
24 simpr 484 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌)
2523, 24oveq12d 7408 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
2622, 25eleqtrrd 2832 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑅 ∈ (𝑥𝐻𝑦))
27 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → 𝑥 = 𝑋)
2827fveq2d 6865 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐹𝑥) = (𝐹𝑋))
29 simplr 768 . . . . . . . . . 10 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → 𝑦 = 𝑌)
3029fveq2d 6865 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐹𝑦) = (𝐹𝑌))
3128, 30opeq12d 4848 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(𝐹𝑋), (𝐹𝑌)⟩)
3229fveq2d 6865 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐾𝑦) = (𝐾𝑌))
3331, 32oveq12d 7408 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦)) = (⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌)))
3429fveq2d 6865 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐴𝑦) = (𝐴𝑌))
3527, 29oveq12d 7408 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌))
36 simpr 484 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → 𝑓 = 𝑅)
3735, 36fveq12d 6868 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ((𝑥𝐺𝑦)‘𝑓) = ((𝑋𝐺𝑌)‘𝑅))
3833, 34, 37oveq123d 7411 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)))
3927fveq2d 6865 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐾𝑥) = (𝐾𝑋))
4028, 39opeq12d 4848 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ⟨(𝐹𝑥), (𝐾𝑥)⟩ = ⟨(𝐹𝑋), (𝐾𝑋)⟩)
4140, 32oveq12d 7408 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦)) = (⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌)))
4227, 29oveq12d 7408 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝑥𝐿𝑦) = (𝑋𝐿𝑌))
4342, 36fveq12d 6868 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ((𝑥𝐿𝑦)‘𝑓) = ((𝑋𝐿𝑌)‘𝑅))
4427fveq2d 6865 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐴𝑥) = (𝐴𝑋))
4541, 43, 44oveq123d 7411 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋)))
4638, 45eqeq12d 2746 . . . . 5 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) ↔ ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋))))
4726, 46rspcdv 3583 . . . 4 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋))))
4820, 47rspcimdv 3581 . . 3 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋))))
4918, 48rspcimdv 3581 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋))))
5017, 49mpd 15 1 (𝜑 → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cop 4598   class class class wbr 5110  cfv 6514  (class class class)co 7390  Xcixp 8873  Basecbs 17186  Hom chom 17238  compcco 17239   Func cfunc 17823   Nat cnat 17913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-ixp 8874  df-func 17827  df-nat 17915
This theorem is referenced by:  fuccocl  17936  invfuc  17946  evlfcllem  18189  yonedalem3b  18247  yonedainv  18249  natoppf  49222  fuco22natlem1  49335  fuco22natlem2  49336  fuco23alem  49344  concom  49656  coccom  49657
  Copyright terms: Public domain W3C validator