MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nati Structured version   Visualization version   GIF version

Theorem nati 17865
Description: Naturality property of a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
natixp.2 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
natixp.b 𝐵 = (Base‘𝐶)
nati.h 𝐻 = (Hom ‘𝐶)
nati.o · = (comp‘𝐷)
nati.x (𝜑𝑋𝐵)
nati.y (𝜑𝑌𝐵)
nati.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
nati (𝜑 → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋)))

Proof of Theorem nati
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natixp.2 . . . 4 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
2 natrcl.1 . . . . 5 𝑁 = (𝐶 Nat 𝐷)
3 natixp.b . . . . 5 𝐵 = (Base‘𝐶)
4 nati.h . . . . 5 𝐻 = (Hom ‘𝐶)
5 eqid 2729 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
6 nati.o . . . . 5 · = (comp‘𝐷)
72natrcl 17860 . . . . . . . 8 (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
81, 7syl 17 . . . . . . 7 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
98simpld 494 . . . . . 6 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
10 df-br 5093 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylibr 234 . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
128simprd 495 . . . . . 6 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
13 df-br 5093 . . . . . 6 (𝐾(𝐶 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
1412, 13sylibr 234 . . . . 5 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
152, 3, 4, 5, 6, 11, 14isnat 17857 . . . 4 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)(Hom ‘𝐷)(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))))
161, 15mpbid 232 . . 3 (𝜑 → (𝐴X𝑥𝐵 ((𝐹𝑥)(Hom ‘𝐷)(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
1716simprd 495 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))
18 nati.x . . 3 (𝜑𝑋𝐵)
19 nati.y . . . . 5 (𝜑𝑌𝐵)
2019adantr 480 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
21 nati.r . . . . . . 7 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
2221ad2antrr 726 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑅 ∈ (𝑋𝐻𝑌))
23 simplr 768 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋)
24 simpr 484 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌)
2523, 24oveq12d 7367 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
2622, 25eleqtrrd 2831 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑅 ∈ (𝑥𝐻𝑦))
27 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → 𝑥 = 𝑋)
2827fveq2d 6826 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐹𝑥) = (𝐹𝑋))
29 simplr 768 . . . . . . . . . 10 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → 𝑦 = 𝑌)
3029fveq2d 6826 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐹𝑦) = (𝐹𝑌))
3128, 30opeq12d 4832 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(𝐹𝑋), (𝐹𝑌)⟩)
3229fveq2d 6826 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐾𝑦) = (𝐾𝑌))
3331, 32oveq12d 7367 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦)) = (⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌)))
3429fveq2d 6826 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐴𝑦) = (𝐴𝑌))
3527, 29oveq12d 7367 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌))
36 simpr 484 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → 𝑓 = 𝑅)
3735, 36fveq12d 6829 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ((𝑥𝐺𝑦)‘𝑓) = ((𝑋𝐺𝑌)‘𝑅))
3833, 34, 37oveq123d 7370 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)))
3927fveq2d 6826 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐾𝑥) = (𝐾𝑋))
4028, 39opeq12d 4832 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ⟨(𝐹𝑥), (𝐾𝑥)⟩ = ⟨(𝐹𝑋), (𝐾𝑋)⟩)
4140, 32oveq12d 7367 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦)) = (⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌)))
4227, 29oveq12d 7367 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝑥𝐿𝑦) = (𝑋𝐿𝑌))
4342, 36fveq12d 6829 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ((𝑥𝐿𝑦)‘𝑓) = ((𝑋𝐿𝑌)‘𝑅))
4427fveq2d 6826 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐴𝑥) = (𝐴𝑋))
4541, 43, 44oveq123d 7370 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋)))
4638, 45eqeq12d 2745 . . . . 5 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) ↔ ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋))))
4726, 46rspcdv 3569 . . . 4 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋))))
4820, 47rspcimdv 3567 . . 3 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋))))
4918, 48rspcimdv 3567 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋))))
5017, 49mpd 15 1 (𝜑 → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cop 4583   class class class wbr 5092  cfv 6482  (class class class)co 7349  Xcixp 8824  Basecbs 17120  Hom chom 17172  compcco 17173   Func cfunc 17761   Nat cnat 17851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-ixp 8825  df-func 17765  df-nat 17853
This theorem is referenced by:  fuccocl  17874  invfuc  17884  evlfcllem  18127  yonedalem3b  18185  yonedainv  18187  natoppf  49214  fuco22natlem1  49327  fuco22natlem2  49328  fuco23alem  49336  concom  49648  coccom  49649
  Copyright terms: Public domain W3C validator