Step | Hyp | Ref
| Expression |
1 | | moni.f |
. . . . 5
β’ (π β πΉ β (πππ)) |
2 | | ismon.b |
. . . . . 6
β’ π΅ = (BaseβπΆ) |
3 | | ismon.h |
. . . . . 6
β’ π» = (Hom βπΆ) |
4 | | ismon.o |
. . . . . 6
β’ Β· =
(compβπΆ) |
5 | | ismon.s |
. . . . . 6
β’ π = (MonoβπΆ) |
6 | | ismon.c |
. . . . . 6
β’ (π β πΆ β Cat) |
7 | | ismon.x |
. . . . . 6
β’ (π β π β π΅) |
8 | | ismon.y |
. . . . . 6
β’ (π β π β π΅) |
9 | 2, 3, 4, 5, 6, 7, 8 | ismon2 17677 |
. . . . 5
β’ (π β (πΉ β (πππ) β (πΉ β (ππ»π) β§ βπ§ β π΅ βπ β (π§π»π)ββ β (π§π»π)((πΉ(β¨π§, πβ© Β· π)π) = (πΉ(β¨π§, πβ© Β· π)β) β π = β)))) |
10 | 1, 9 | mpbid 231 |
. . . 4
β’ (π β (πΉ β (ππ»π) β§ βπ§ β π΅ βπ β (π§π»π)ββ β (π§π»π)((πΉ(β¨π§, πβ© Β· π)π) = (πΉ(β¨π§, πβ© Β· π)β) β π = β))) |
11 | 10 | simprd 496 |
. . 3
β’ (π β βπ§ β π΅ βπ β (π§π»π)ββ β (π§π»π)((πΉ(β¨π§, πβ© Β· π)π) = (πΉ(β¨π§, πβ© Β· π)β) β π = β)) |
12 | | moni.z |
. . . 4
β’ (π β π β π΅) |
13 | | moni.g |
. . . . . . 7
β’ (π β πΊ β (ππ»π)) |
14 | 13 | adantr 481 |
. . . . . 6
β’ ((π β§ π§ = π) β πΊ β (ππ»π)) |
15 | | simpr 485 |
. . . . . . 7
β’ ((π β§ π§ = π) β π§ = π) |
16 | 15 | oveq1d 7420 |
. . . . . 6
β’ ((π β§ π§ = π) β (π§π»π) = (ππ»π)) |
17 | 14, 16 | eleqtrrd 2836 |
. . . . 5
β’ ((π β§ π§ = π) β πΊ β (π§π»π)) |
18 | | moni.k |
. . . . . . . . 9
β’ (π β πΎ β (ππ»π)) |
19 | 18 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π§ = π) β πΎ β (ππ»π)) |
20 | 19, 16 | eleqtrrd 2836 |
. . . . . . 7
β’ ((π β§ π§ = π) β πΎ β (π§π»π)) |
21 | 20 | adantr 481 |
. . . . . 6
β’ (((π β§ π§ = π) β§ π = πΊ) β πΎ β (π§π»π)) |
22 | | simpllr 774 |
. . . . . . . . . . 11
β’ ((((π β§ π§ = π) β§ π = πΊ) β§ β = πΎ) β π§ = π) |
23 | 22 | opeq1d 4878 |
. . . . . . . . . 10
β’ ((((π β§ π§ = π) β§ π = πΊ) β§ β = πΎ) β β¨π§, πβ© = β¨π, πβ©) |
24 | 23 | oveq1d 7420 |
. . . . . . . . 9
β’ ((((π β§ π§ = π) β§ π = πΊ) β§ β = πΎ) β (β¨π§, πβ© Β· π) = (β¨π, πβ© Β· π)) |
25 | | eqidd 2733 |
. . . . . . . . 9
β’ ((((π β§ π§ = π) β§ π = πΊ) β§ β = πΎ) β πΉ = πΉ) |
26 | | simplr 767 |
. . . . . . . . 9
β’ ((((π β§ π§ = π) β§ π = πΊ) β§ β = πΎ) β π = πΊ) |
27 | 24, 25, 26 | oveq123d 7426 |
. . . . . . . 8
β’ ((((π β§ π§ = π) β§ π = πΊ) β§ β = πΎ) β (πΉ(β¨π§, πβ© Β· π)π) = (πΉ(β¨π, πβ© Β· π)πΊ)) |
28 | | simpr 485 |
. . . . . . . . 9
β’ ((((π β§ π§ = π) β§ π = πΊ) β§ β = πΎ) β β = πΎ) |
29 | 24, 25, 28 | oveq123d 7426 |
. . . . . . . 8
β’ ((((π β§ π§ = π) β§ π = πΊ) β§ β = πΎ) β (πΉ(β¨π§, πβ© Β· π)β) = (πΉ(β¨π, πβ© Β· π)πΎ)) |
30 | 27, 29 | eqeq12d 2748 |
. . . . . . 7
β’ ((((π β§ π§ = π) β§ π = πΊ) β§ β = πΎ) β ((πΉ(β¨π§, πβ© Β· π)π) = (πΉ(β¨π§, πβ© Β· π)β) β (πΉ(β¨π, πβ© Β· π)πΊ) = (πΉ(β¨π, πβ© Β· π)πΎ))) |
31 | 26, 28 | eqeq12d 2748 |
. . . . . . 7
β’ ((((π β§ π§ = π) β§ π = πΊ) β§ β = πΎ) β (π = β β πΊ = πΎ)) |
32 | 30, 31 | imbi12d 344 |
. . . . . 6
β’ ((((π β§ π§ = π) β§ π = πΊ) β§ β = πΎ) β (((πΉ(β¨π§, πβ© Β· π)π) = (πΉ(β¨π§, πβ© Β· π)β) β π = β) β ((πΉ(β¨π, πβ© Β· π)πΊ) = (πΉ(β¨π, πβ© Β· π)πΎ) β πΊ = πΎ))) |
33 | 21, 32 | rspcdv 3604 |
. . . . 5
β’ (((π β§ π§ = π) β§ π = πΊ) β (ββ β (π§π»π)((πΉ(β¨π§, πβ© Β· π)π) = (πΉ(β¨π§, πβ© Β· π)β) β π = β) β ((πΉ(β¨π, πβ© Β· π)πΊ) = (πΉ(β¨π, πβ© Β· π)πΎ) β πΊ = πΎ))) |
34 | 17, 33 | rspcimdv 3602 |
. . . 4
β’ ((π β§ π§ = π) β (βπ β (π§π»π)ββ β (π§π»π)((πΉ(β¨π§, πβ© Β· π)π) = (πΉ(β¨π§, πβ© Β· π)β) β π = β) β ((πΉ(β¨π, πβ© Β· π)πΊ) = (πΉ(β¨π, πβ© Β· π)πΎ) β πΊ = πΎ))) |
35 | 12, 34 | rspcimdv 3602 |
. . 3
β’ (π β (βπ§ β π΅ βπ β (π§π»π)ββ β (π§π»π)((πΉ(β¨π§, πβ© Β· π)π) = (πΉ(β¨π§, πβ© Β· π)β) β π = β) β ((πΉ(β¨π, πβ© Β· π)πΊ) = (πΉ(β¨π, πβ© Β· π)πΎ) β πΊ = πΎ))) |
36 | 11, 35 | mpd 15 |
. 2
β’ (π β ((πΉ(β¨π, πβ© Β· π)πΊ) = (πΉ(β¨π, πβ© Β· π)πΎ) β πΊ = πΎ)) |
37 | | oveq2 7413 |
. 2
β’ (πΊ = πΎ β (πΉ(β¨π, πβ© Β· π)πΊ) = (πΉ(β¨π, πβ© Β· π)πΎ)) |
38 | 36, 37 | impbid1 224 |
1
β’ (π β ((πΉ(β¨π, πβ© Β· π)πΊ) = (πΉ(β¨π, πβ© Β· π)πΎ) β πΊ = πΎ)) |