MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moni Structured version   Visualization version   GIF version

Theorem moni 17705
Description: Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
moni.z (𝜑𝑍𝐵)
moni.f (𝜑𝐹 ∈ (𝑋𝑀𝑌))
moni.g (𝜑𝐺 ∈ (𝑍𝐻𝑋))
moni.k (𝜑𝐾 ∈ (𝑍𝐻𝑋))
Assertion
Ref Expression
moni (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) ↔ 𝐺 = 𝐾))

Proof of Theorem moni
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moni.f . . . . 5 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
2 ismon.b . . . . . 6 𝐵 = (Base‘𝐶)
3 ismon.h . . . . . 6 𝐻 = (Hom ‘𝐶)
4 ismon.o . . . . . 6 · = (comp‘𝐶)
5 ismon.s . . . . . 6 𝑀 = (Mono‘𝐶)
6 ismon.c . . . . . 6 (𝜑𝐶 ∈ Cat)
7 ismon.x . . . . . 6 (𝜑𝑋𝐵)
8 ismon.y . . . . . 6 (𝜑𝑌𝐵)
92, 3, 4, 5, 6, 7, 8ismon2 17703 . . . . 5 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
101, 9mpbid 232 . . . 4 (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
1110simprd 495 . . 3 (𝜑 → ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))
12 moni.z . . . 4 (𝜑𝑍𝐵)
13 moni.g . . . . . . 7 (𝜑𝐺 ∈ (𝑍𝐻𝑋))
1413adantr 480 . . . . . 6 ((𝜑𝑧 = 𝑍) → 𝐺 ∈ (𝑍𝐻𝑋))
15 simpr 484 . . . . . . 7 ((𝜑𝑧 = 𝑍) → 𝑧 = 𝑍)
1615oveq1d 7405 . . . . . 6 ((𝜑𝑧 = 𝑍) → (𝑧𝐻𝑋) = (𝑍𝐻𝑋))
1714, 16eleqtrrd 2832 . . . . 5 ((𝜑𝑧 = 𝑍) → 𝐺 ∈ (𝑧𝐻𝑋))
18 moni.k . . . . . . . . 9 (𝜑𝐾 ∈ (𝑍𝐻𝑋))
1918adantr 480 . . . . . . . 8 ((𝜑𝑧 = 𝑍) → 𝐾 ∈ (𝑍𝐻𝑋))
2019, 16eleqtrrd 2832 . . . . . . 7 ((𝜑𝑧 = 𝑍) → 𝐾 ∈ (𝑧𝐻𝑋))
2120adantr 480 . . . . . 6 (((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) → 𝐾 ∈ (𝑧𝐻𝑋))
22 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → 𝑧 = 𝑍)
2322opeq1d 4846 . . . . . . . . . 10 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → ⟨𝑧, 𝑋⟩ = ⟨𝑍, 𝑋⟩)
2423oveq1d 7405 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (⟨𝑧, 𝑋· 𝑌) = (⟨𝑍, 𝑋· 𝑌))
25 eqidd 2731 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → 𝐹 = 𝐹)
26 simplr 768 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → 𝑔 = 𝐺)
2724, 25, 26oveq123d 7411 . . . . . . . 8 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐺))
28 simpr 484 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → = 𝐾)
2924, 25, 28oveq123d 7411 . . . . . . . 8 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (𝐹(⟨𝑧, 𝑋· 𝑌)) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾))
3027, 29eqeq12d 2746 . . . . . . 7 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → ((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) ↔ (𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾)))
3126, 28eqeq12d 2746 . . . . . . 7 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (𝑔 = 𝐺 = 𝐾))
3230, 31imbi12d 344 . . . . . 6 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) ↔ ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3321, 32rspcdv 3583 . . . . 5 (((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) → (∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3417, 33rspcimdv 3581 . . . 4 ((𝜑𝑧 = 𝑍) → (∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3512, 34rspcimdv 3581 . . 3 (𝜑 → (∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3611, 35mpd 15 . 2 (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾))
37 oveq2 7398 . 2 (𝐺 = 𝐾 → (𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾))
3836, 37impbid1 225 1 (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) ↔ 𝐺 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cop 4598  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Monocmon 17697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-cat 17636  df-mon 17699
This theorem is referenced by:  epii  17712  monsect  17752  fthmon  17898  setcmon  18056
  Copyright terms: Public domain W3C validator