MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moni Structured version   Visualization version   GIF version

Theorem moni 17784
Description: Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
moni.z (𝜑𝑍𝐵)
moni.f (𝜑𝐹 ∈ (𝑋𝑀𝑌))
moni.g (𝜑𝐺 ∈ (𝑍𝐻𝑋))
moni.k (𝜑𝐾 ∈ (𝑍𝐻𝑋))
Assertion
Ref Expression
moni (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) ↔ 𝐺 = 𝐾))

Proof of Theorem moni
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moni.f . . . . 5 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
2 ismon.b . . . . . 6 𝐵 = (Base‘𝐶)
3 ismon.h . . . . . 6 𝐻 = (Hom ‘𝐶)
4 ismon.o . . . . . 6 · = (comp‘𝐶)
5 ismon.s . . . . . 6 𝑀 = (Mono‘𝐶)
6 ismon.c . . . . . 6 (𝜑𝐶 ∈ Cat)
7 ismon.x . . . . . 6 (𝜑𝑋𝐵)
8 ismon.y . . . . . 6 (𝜑𝑌𝐵)
92, 3, 4, 5, 6, 7, 8ismon2 17782 . . . . 5 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
101, 9mpbid 232 . . . 4 (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
1110simprd 495 . . 3 (𝜑 → ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))
12 moni.z . . . 4 (𝜑𝑍𝐵)
13 moni.g . . . . . . 7 (𝜑𝐺 ∈ (𝑍𝐻𝑋))
1413adantr 480 . . . . . 6 ((𝜑𝑧 = 𝑍) → 𝐺 ∈ (𝑍𝐻𝑋))
15 simpr 484 . . . . . . 7 ((𝜑𝑧 = 𝑍) → 𝑧 = 𝑍)
1615oveq1d 7446 . . . . . 6 ((𝜑𝑧 = 𝑍) → (𝑧𝐻𝑋) = (𝑍𝐻𝑋))
1714, 16eleqtrrd 2842 . . . . 5 ((𝜑𝑧 = 𝑍) → 𝐺 ∈ (𝑧𝐻𝑋))
18 moni.k . . . . . . . . 9 (𝜑𝐾 ∈ (𝑍𝐻𝑋))
1918adantr 480 . . . . . . . 8 ((𝜑𝑧 = 𝑍) → 𝐾 ∈ (𝑍𝐻𝑋))
2019, 16eleqtrrd 2842 . . . . . . 7 ((𝜑𝑧 = 𝑍) → 𝐾 ∈ (𝑧𝐻𝑋))
2120adantr 480 . . . . . 6 (((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) → 𝐾 ∈ (𝑧𝐻𝑋))
22 simpllr 776 . . . . . . . . . . 11 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → 𝑧 = 𝑍)
2322opeq1d 4884 . . . . . . . . . 10 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → ⟨𝑧, 𝑋⟩ = ⟨𝑍, 𝑋⟩)
2423oveq1d 7446 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (⟨𝑧, 𝑋· 𝑌) = (⟨𝑍, 𝑋· 𝑌))
25 eqidd 2736 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → 𝐹 = 𝐹)
26 simplr 769 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → 𝑔 = 𝐺)
2724, 25, 26oveq123d 7452 . . . . . . . 8 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐺))
28 simpr 484 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → = 𝐾)
2924, 25, 28oveq123d 7452 . . . . . . . 8 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (𝐹(⟨𝑧, 𝑋· 𝑌)) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾))
3027, 29eqeq12d 2751 . . . . . . 7 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → ((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) ↔ (𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾)))
3126, 28eqeq12d 2751 . . . . . . 7 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (𝑔 = 𝐺 = 𝐾))
3230, 31imbi12d 344 . . . . . 6 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) ↔ ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3321, 32rspcdv 3614 . . . . 5 (((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) → (∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3417, 33rspcimdv 3612 . . . 4 ((𝜑𝑧 = 𝑍) → (∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3512, 34rspcimdv 3612 . . 3 (𝜑 → (∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3611, 35mpd 15 . 2 (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾))
37 oveq2 7439 . 2 (𝐺 = 𝐾 → (𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾))
3836, 37impbid1 225 1 (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) ↔ 𝐺 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  cop 4637  cfv 6563  (class class class)co 7431  Basecbs 17245  Hom chom 17309  compcco 17310  Catccat 17709  Monocmon 17776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-cat 17713  df-mon 17778
This theorem is referenced by:  epii  17791  monsect  17831  fthmon  17981  setcmon  18141
  Copyright terms: Public domain W3C validator