MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moni Structured version   Visualization version   GIF version

Theorem moni 17679
Description: Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐡 = (Baseβ€˜πΆ)
ismon.h 𝐻 = (Hom β€˜πΆ)
ismon.o Β· = (compβ€˜πΆ)
ismon.s 𝑀 = (Monoβ€˜πΆ)
ismon.c (πœ‘ β†’ 𝐢 ∈ Cat)
ismon.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
ismon.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
moni.z (πœ‘ β†’ 𝑍 ∈ 𝐡)
moni.f (πœ‘ β†’ 𝐹 ∈ (π‘‹π‘€π‘Œ))
moni.g (πœ‘ β†’ 𝐺 ∈ (𝑍𝐻𝑋))
moni.k (πœ‘ β†’ 𝐾 ∈ (𝑍𝐻𝑋))
Assertion
Ref Expression
moni (πœ‘ β†’ ((𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐺) = (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐾) ↔ 𝐺 = 𝐾))

Proof of Theorem moni
Dummy variables 𝑔 β„Ž 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moni.f . . . . 5 (πœ‘ β†’ 𝐹 ∈ (π‘‹π‘€π‘Œ))
2 ismon.b . . . . . 6 𝐡 = (Baseβ€˜πΆ)
3 ismon.h . . . . . 6 𝐻 = (Hom β€˜πΆ)
4 ismon.o . . . . . 6 Β· = (compβ€˜πΆ)
5 ismon.s . . . . . 6 𝑀 = (Monoβ€˜πΆ)
6 ismon.c . . . . . 6 (πœ‘ β†’ 𝐢 ∈ Cat)
7 ismon.x . . . . . 6 (πœ‘ β†’ 𝑋 ∈ 𝐡)
8 ismon.y . . . . . 6 (πœ‘ β†’ π‘Œ ∈ 𝐡)
92, 3, 4, 5, 6, 7, 8ismon2 17677 . . . . 5 (πœ‘ β†’ (𝐹 ∈ (π‘‹π‘€π‘Œ) ↔ (𝐹 ∈ (π‘‹π»π‘Œ) ∧ βˆ€π‘§ ∈ 𝐡 βˆ€π‘” ∈ (𝑧𝐻𝑋)βˆ€β„Ž ∈ (𝑧𝐻𝑋)((𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)𝑔) = (𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)β„Ž) β†’ 𝑔 = β„Ž))))
101, 9mpbid 231 . . . 4 (πœ‘ β†’ (𝐹 ∈ (π‘‹π»π‘Œ) ∧ βˆ€π‘§ ∈ 𝐡 βˆ€π‘” ∈ (𝑧𝐻𝑋)βˆ€β„Ž ∈ (𝑧𝐻𝑋)((𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)𝑔) = (𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)β„Ž) β†’ 𝑔 = β„Ž)))
1110simprd 496 . . 3 (πœ‘ β†’ βˆ€π‘§ ∈ 𝐡 βˆ€π‘” ∈ (𝑧𝐻𝑋)βˆ€β„Ž ∈ (𝑧𝐻𝑋)((𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)𝑔) = (𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)β„Ž) β†’ 𝑔 = β„Ž))
12 moni.z . . . 4 (πœ‘ β†’ 𝑍 ∈ 𝐡)
13 moni.g . . . . . . 7 (πœ‘ β†’ 𝐺 ∈ (𝑍𝐻𝑋))
1413adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑧 = 𝑍) β†’ 𝐺 ∈ (𝑍𝐻𝑋))
15 simpr 485 . . . . . . 7 ((πœ‘ ∧ 𝑧 = 𝑍) β†’ 𝑧 = 𝑍)
1615oveq1d 7420 . . . . . 6 ((πœ‘ ∧ 𝑧 = 𝑍) β†’ (𝑧𝐻𝑋) = (𝑍𝐻𝑋))
1714, 16eleqtrrd 2836 . . . . 5 ((πœ‘ ∧ 𝑧 = 𝑍) β†’ 𝐺 ∈ (𝑧𝐻𝑋))
18 moni.k . . . . . . . . 9 (πœ‘ β†’ 𝐾 ∈ (𝑍𝐻𝑋))
1918adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝑧 = 𝑍) β†’ 𝐾 ∈ (𝑍𝐻𝑋))
2019, 16eleqtrrd 2836 . . . . . . 7 ((πœ‘ ∧ 𝑧 = 𝑍) β†’ 𝐾 ∈ (𝑧𝐻𝑋))
2120adantr 481 . . . . . 6 (((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) β†’ 𝐾 ∈ (𝑧𝐻𝑋))
22 simpllr 774 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ β„Ž = 𝐾) β†’ 𝑧 = 𝑍)
2322opeq1d 4878 . . . . . . . . . 10 ((((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ β„Ž = 𝐾) β†’ βŸ¨π‘§, π‘‹βŸ© = βŸ¨π‘, π‘‹βŸ©)
2423oveq1d 7420 . . . . . . . . 9 ((((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ β„Ž = 𝐾) β†’ (βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ) = (βŸ¨π‘, π‘‹βŸ© Β· π‘Œ))
25 eqidd 2733 . . . . . . . . 9 ((((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ β„Ž = 𝐾) β†’ 𝐹 = 𝐹)
26 simplr 767 . . . . . . . . 9 ((((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ β„Ž = 𝐾) β†’ 𝑔 = 𝐺)
2724, 25, 26oveq123d 7426 . . . . . . . 8 ((((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ β„Ž = 𝐾) β†’ (𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)𝑔) = (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐺))
28 simpr 485 . . . . . . . . 9 ((((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ β„Ž = 𝐾) β†’ β„Ž = 𝐾)
2924, 25, 28oveq123d 7426 . . . . . . . 8 ((((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ β„Ž = 𝐾) β†’ (𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)β„Ž) = (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐾))
3027, 29eqeq12d 2748 . . . . . . 7 ((((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ β„Ž = 𝐾) β†’ ((𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)𝑔) = (𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)β„Ž) ↔ (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐺) = (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐾)))
3126, 28eqeq12d 2748 . . . . . . 7 ((((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ β„Ž = 𝐾) β†’ (𝑔 = β„Ž ↔ 𝐺 = 𝐾))
3230, 31imbi12d 344 . . . . . 6 ((((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ β„Ž = 𝐾) β†’ (((𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)𝑔) = (𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)β„Ž) β†’ 𝑔 = β„Ž) ↔ ((𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐺) = (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐾) β†’ 𝐺 = 𝐾)))
3321, 32rspcdv 3604 . . . . 5 (((πœ‘ ∧ 𝑧 = 𝑍) ∧ 𝑔 = 𝐺) β†’ (βˆ€β„Ž ∈ (𝑧𝐻𝑋)((𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)𝑔) = (𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)β„Ž) β†’ 𝑔 = β„Ž) β†’ ((𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐺) = (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐾) β†’ 𝐺 = 𝐾)))
3417, 33rspcimdv 3602 . . . 4 ((πœ‘ ∧ 𝑧 = 𝑍) β†’ (βˆ€π‘” ∈ (𝑧𝐻𝑋)βˆ€β„Ž ∈ (𝑧𝐻𝑋)((𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)𝑔) = (𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)β„Ž) β†’ 𝑔 = β„Ž) β†’ ((𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐺) = (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐾) β†’ 𝐺 = 𝐾)))
3512, 34rspcimdv 3602 . . 3 (πœ‘ β†’ (βˆ€π‘§ ∈ 𝐡 βˆ€π‘” ∈ (𝑧𝐻𝑋)βˆ€β„Ž ∈ (𝑧𝐻𝑋)((𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)𝑔) = (𝐹(βŸ¨π‘§, π‘‹βŸ© Β· π‘Œ)β„Ž) β†’ 𝑔 = β„Ž) β†’ ((𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐺) = (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐾) β†’ 𝐺 = 𝐾)))
3611, 35mpd 15 . 2 (πœ‘ β†’ ((𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐺) = (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐾) β†’ 𝐺 = 𝐾))
37 oveq2 7413 . 2 (𝐺 = 𝐾 β†’ (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐺) = (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐾))
3836, 37impbid1 224 1 (πœ‘ β†’ ((𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐺) = (𝐹(βŸ¨π‘, π‘‹βŸ© Β· π‘Œ)𝐾) ↔ 𝐺 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βŸ¨cop 4633  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  Hom chom 17204  compcco 17205  Catccat 17604  Monocmon 17671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-cat 17608  df-mon 17673
This theorem is referenced by:  epii  17686  monsect  17726  fthmon  17874  setcmon  18033
  Copyright terms: Public domain W3C validator