MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moni Structured version   Visualization version   GIF version

Theorem moni 17797
Description: Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
moni.z (𝜑𝑍𝐵)
moni.f (𝜑𝐹 ∈ (𝑋𝑀𝑌))
moni.g (𝜑𝐺 ∈ (𝑍𝐻𝑋))
moni.k (𝜑𝐾 ∈ (𝑍𝐻𝑋))
Assertion
Ref Expression
moni (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) ↔ 𝐺 = 𝐾))

Proof of Theorem moni
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moni.f . . . . 5 (𝜑𝐹 ∈ (𝑋𝑀𝑌))
2 ismon.b . . . . . 6 𝐵 = (Base‘𝐶)
3 ismon.h . . . . . 6 𝐻 = (Hom ‘𝐶)
4 ismon.o . . . . . 6 · = (comp‘𝐶)
5 ismon.s . . . . . 6 𝑀 = (Mono‘𝐶)
6 ismon.c . . . . . 6 (𝜑𝐶 ∈ Cat)
7 ismon.x . . . . . 6 (𝜑𝑋𝐵)
8 ismon.y . . . . . 6 (𝜑𝑌𝐵)
92, 3, 4, 5, 6, 7, 8ismon2 17795 . . . . 5 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
101, 9mpbid 232 . . . 4 (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
1110simprd 495 . . 3 (𝜑 → ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))
12 moni.z . . . 4 (𝜑𝑍𝐵)
13 moni.g . . . . . . 7 (𝜑𝐺 ∈ (𝑍𝐻𝑋))
1413adantr 480 . . . . . 6 ((𝜑𝑧 = 𝑍) → 𝐺 ∈ (𝑍𝐻𝑋))
15 simpr 484 . . . . . . 7 ((𝜑𝑧 = 𝑍) → 𝑧 = 𝑍)
1615oveq1d 7463 . . . . . 6 ((𝜑𝑧 = 𝑍) → (𝑧𝐻𝑋) = (𝑍𝐻𝑋))
1714, 16eleqtrrd 2847 . . . . 5 ((𝜑𝑧 = 𝑍) → 𝐺 ∈ (𝑧𝐻𝑋))
18 moni.k . . . . . . . . 9 (𝜑𝐾 ∈ (𝑍𝐻𝑋))
1918adantr 480 . . . . . . . 8 ((𝜑𝑧 = 𝑍) → 𝐾 ∈ (𝑍𝐻𝑋))
2019, 16eleqtrrd 2847 . . . . . . 7 ((𝜑𝑧 = 𝑍) → 𝐾 ∈ (𝑧𝐻𝑋))
2120adantr 480 . . . . . 6 (((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) → 𝐾 ∈ (𝑧𝐻𝑋))
22 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → 𝑧 = 𝑍)
2322opeq1d 4903 . . . . . . . . . 10 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → ⟨𝑧, 𝑋⟩ = ⟨𝑍, 𝑋⟩)
2423oveq1d 7463 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (⟨𝑧, 𝑋· 𝑌) = (⟨𝑍, 𝑋· 𝑌))
25 eqidd 2741 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → 𝐹 = 𝐹)
26 simplr 768 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → 𝑔 = 𝐺)
2724, 25, 26oveq123d 7469 . . . . . . . 8 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐺))
28 simpr 484 . . . . . . . . 9 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → = 𝐾)
2924, 25, 28oveq123d 7469 . . . . . . . 8 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (𝐹(⟨𝑧, 𝑋· 𝑌)) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾))
3027, 29eqeq12d 2756 . . . . . . 7 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → ((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) ↔ (𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾)))
3126, 28eqeq12d 2756 . . . . . . 7 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (𝑔 = 𝐺 = 𝐾))
3230, 31imbi12d 344 . . . . . 6 ((((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) ∧ = 𝐾) → (((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) ↔ ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3321, 32rspcdv 3627 . . . . 5 (((𝜑𝑧 = 𝑍) ∧ 𝑔 = 𝐺) → (∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3417, 33rspcimdv 3625 . . . 4 ((𝜑𝑧 = 𝑍) → (∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3512, 34rspcimdv 3625 . . 3 (𝜑 → (∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ) → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾)))
3611, 35mpd 15 . 2 (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) → 𝐺 = 𝐾))
37 oveq2 7456 . 2 (𝐺 = 𝐾 → (𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾))
3836, 37impbid1 225 1 (𝜑 → ((𝐹(⟨𝑍, 𝑋· 𝑌)𝐺) = (𝐹(⟨𝑍, 𝑋· 𝑌)𝐾) ↔ 𝐺 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cop 4654  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Monocmon 17789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-cat 17726  df-mon 17791
This theorem is referenced by:  epii  17804  monsect  17844  fthmon  17994  setcmon  18154
  Copyright terms: Public domain W3C validator