| Step | Hyp | Ref
| Expression |
| 1 | | mpomulcn.j |
. 2
⊢ 𝐽 =
(TopOpen‘ℂfld) |
| 2 | | mpomulf 11250 |
. 2
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ ×
ℂ)⟶ℂ |
| 3 | | mulcn2 15632 |
. . 3
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ ∃𝑧 ∈
ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ
(((abs‘(𝑑 −
𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) |
| 4 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ))
→ 𝑢 ∈
ℂ) |
| 5 | | simplll 775 |
. . . . . . . . . . . . 13
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ))
∧ 𝑑 = 𝑢) → 𝑣 ∈ ℂ) |
| 6 | | simplr 769 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢) |
| 7 | 6 | fvoveq1d 7453 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑑 − 𝑏)) = (abs‘(𝑢 − 𝑏))) |
| 8 | 7 | breq1d 5153 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑑 − 𝑏)) < 𝑧 ↔ (abs‘(𝑢 − 𝑏)) < 𝑧)) |
| 9 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣) |
| 10 | 9 | fvoveq1d 7453 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑒 − 𝑐)) = (abs‘(𝑣 − 𝑐))) |
| 11 | 10 | breq1d 5153 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑒 − 𝑐)) < 𝑤 ↔ (abs‘(𝑣 − 𝑐)) < 𝑤)) |
| 12 | 8, 11 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → (((abs‘(𝑑 − 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) ↔ ((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤))) |
| 13 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢) |
| 14 | 13 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑢 = 𝑑) |
| 15 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣) |
| 16 | 15 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 = 𝑒) |
| 17 | 14, 16 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑑 · 𝑒)) |
| 18 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) → 𝑢 ∈ ℂ) |
| 19 | | simplll 775 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 ∈ ℂ) |
| 20 | | tru 1544 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
⊤ |
| 21 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦)) |
| 22 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣)) |
| 23 | 21, 22 | cbvmpov 7528 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) |
| 24 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (⊤
→ (𝑥 ∈ ℂ,
𝑦 ∈ ℂ ↦
(𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))) |
| 25 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (⊤
→ 〈𝑢, 𝑣〉 = 〈𝑢, 𝑣〉) |
| 26 | | mulcl 11239 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ) |
| 27 | 26 | 3adant1 1131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((⊤ ∧ 𝑢
∈ ℂ ∧ 𝑣
∈ ℂ) → (𝑢
· 𝑣) ∈
ℂ) |
| 28 | 24, 25, 27 | fvmpopr2d 7595 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((⊤ ∧ 𝑢
∈ ℂ ∧ 𝑣
∈ ℂ) → ((𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 ·
𝑦))‘〈𝑢, 𝑣〉) = (𝑢 · 𝑣)) |
| 29 | 28 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((⊤ ∧ 𝑢
∈ ℂ ∧ 𝑣
∈ ℂ) → (𝑢
· 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉)) |
| 30 | 20, 29 | mp3an1 1450 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉)) |
| 31 | | df-ov 7434 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉) |
| 32 | 30, 31 | eqtr4di 2795 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣)) |
| 33 | 18, 19, 32 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣)) |
| 34 | 17, 33 | eqtr3d 2779 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣)) |
| 35 | 34 | adantllr 719 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣)) |
| 36 | | df-ov 7434 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑏, 𝑐〉) |
| 37 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑏 → (𝑥 · 𝑦) = (𝑏 · 𝑦)) |
| 38 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑐 → (𝑏 · 𝑦) = (𝑏 · 𝑐)) |
| 39 | 37, 38 | cbvmpov 7528 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐)) |
| 40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ ℝ+
→ (𝑥 ∈ ℂ,
𝑦 ∈ ℂ ↦
(𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐))) |
| 41 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ ℝ+
→ 〈𝑏, 𝑐〉 = 〈𝑏, 𝑐〉) |
| 42 | | mulcl 11239 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) ∈ ℂ) |
| 43 | 42 | 3adant1 1131 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ (𝑏 · 𝑐) ∈
ℂ) |
| 44 | 40, 41, 43 | fvmpopr2d 7595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ ((𝑥 ∈ ℂ,
𝑦 ∈ ℂ ↦
(𝑥 · 𝑦))‘〈𝑏, 𝑐〉) = (𝑏 · 𝑐)) |
| 45 | 36, 44 | eqtr2id 2790 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐)) |
| 46 | 45 | ad3antlr 731 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐)) |
| 47 | 35, 46 | oveq12d 7449 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → ((𝑑 · 𝑒) − (𝑏 · 𝑐)) = ((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) |
| 48 | 47 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) = (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐)))) |
| 49 | 48 | breq1d 5153 |
. . . . . . . . . . . . . 14
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → ((abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎 ↔ (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)) |
| 50 | 12, 49 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢
(((((𝑣 ∈
ℂ ∧ 𝑢 ∈
ℂ) ∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℂ ∧ 𝑐
∈ ℂ)) ∧ 𝑑 =
𝑢) ∧ 𝑒 = 𝑣) → ((((abs‘(𝑑 − 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) ↔ (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) |
| 51 | 5, 50 | rspcdv 3614 |
. . . . . . . . . . . 12
⊢ ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ))
∧ 𝑑 = 𝑢) → (∀𝑒 ∈ ℂ
(((abs‘(𝑑 −
𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) |
| 52 | 4, 51 | rspcimdv 3612 |
. . . . . . . . . . 11
⊢ (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ))
→ (∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) |
| 53 | 52 | expimpd 453 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
∧ ∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) |
| 54 | 53 | ex 412 |
. . . . . . . . 9
⊢ (𝑣 ∈ ℂ → (𝑢 ∈ ℂ → (((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
∧ ∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))) |
| 55 | 54 | com13 88 |
. . . . . . . 8
⊢ (((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
∧ ∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → (𝑣 ∈ ℂ → (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))) |
| 56 | 55 | ralrimdv 3152 |
. . . . . . 7
⊢ (((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
∧ ∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) |
| 57 | 56 | ex 412 |
. . . . . 6
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ (∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))) |
| 58 | 57 | ralrimdv 3152 |
. . . . 5
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ (∀𝑑 ∈
ℂ ∀𝑒 ∈
ℂ (((abs‘(𝑑
− 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) |
| 59 | 58 | reximdv 3170 |
. . . 4
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ (∃𝑤 ∈
ℝ+ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑 − 𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) |
| 60 | 59 | reximdv 3170 |
. . 3
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ (∃𝑧 ∈
ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ
(((abs‘(𝑑 −
𝑏)) < 𝑧 ∧ (abs‘(𝑒 − 𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ ℂ
∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))) |
| 61 | 3, 60 | mpd 15 |
. 2
⊢ ((𝑎 ∈ ℝ+
∧ 𝑏 ∈ ℂ
∧ 𝑐 ∈ ℂ)
→ ∃𝑧 ∈
ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑧 ∧ (abs‘(𝑣 − 𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)) |
| 62 | 1, 2, 61 | addcnlem 24886 |
1
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |