MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpomulcn Structured version   Visualization version   GIF version

Theorem mpomulcn 24783
Description: Complex number multiplication is a continuous function. Version of mulcn 24781 using maps-to notation, which does not require ax-mulf 11083. (Contributed by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
mpomulcn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
mpomulcn (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem mpomulcn
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 𝑧 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpomulcn.j . 2 𝐽 = (TopOpen‘ℂfld)
2 mpomulf 11098 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
3 mulcn2 15500 . . 3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎))
4 simplr 768 . . . . . . . . . . . 12 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → 𝑢 ∈ ℂ)
5 simplll 774 . . . . . . . . . . . . 13 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) → 𝑣 ∈ ℂ)
6 simplr 768 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢)
76fvoveq1d 7368 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑑𝑏)) = (abs‘(𝑢𝑏)))
87breq1d 5101 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑑𝑏)) < 𝑧 ↔ (abs‘(𝑢𝑏)) < 𝑧))
9 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣)
109fvoveq1d 7368 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑒𝑐)) = (abs‘(𝑣𝑐)))
1110breq1d 5101 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑒𝑐)) < 𝑤 ↔ (abs‘(𝑣𝑐)) < 𝑤))
128, 11anbi12d 632 . . . . . . . . . . . . . 14 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) ↔ ((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤)))
13 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢)
1413eqcomd 2737 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑢 = 𝑑)
15 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣)
1615eqcomd 2737 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 = 𝑒)
1714, 16oveq12d 7364 . . . . . . . . . . . . . . . . . . 19 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑑 · 𝑒))
18 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) → 𝑢 ∈ ℂ)
19 simplll 774 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 ∈ ℂ)
20 tru 1545 . . . . . . . . . . . . . . . . . . . . . 22
21 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
22 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
2321, 22cbvmpov 7441 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
2423a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)))
25 eqidd 2732 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ⟨𝑢, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
26 mulcl 11087 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
27263adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
2824, 25, 27fvmpopr2d 7508 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = (𝑢 · 𝑣))
2928eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩))
3020, 29mp3an1 1450 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩))
31 df-ov 7349 . . . . . . . . . . . . . . . . . . . . 21 (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩)
3230, 31eqtr4di 2784 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3318, 19, 32syl2an2r 685 . . . . . . . . . . . . . . . . . . 19 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3417, 33eqtr3d 2768 . . . . . . . . . . . . . . . . . 18 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3534adantllr 719 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
36 df-ov 7349 . . . . . . . . . . . . . . . . . . 19 (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑏, 𝑐⟩)
37 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → (𝑥 · 𝑦) = (𝑏 · 𝑦))
38 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑐 → (𝑏 · 𝑦) = (𝑏 · 𝑐))
3937, 38cbvmpov 7441 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐))
4039a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ+ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐)))
41 eqidd 2732 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ+ → ⟨𝑏, 𝑐⟩ = ⟨𝑏, 𝑐⟩)
42 mulcl 11087 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) ∈ ℂ)
43423adant1 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) ∈ ℂ)
4440, 41, 43fvmpopr2d 7508 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑏, 𝑐⟩) = (𝑏 · 𝑐))
4536, 44eqtr2id 2779 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))
4645ad3antlr 731 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))
4735, 46oveq12d 7364 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((𝑑 · 𝑒) − (𝑏 · 𝑐)) = ((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐)))
4847fveq2d 6826 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) = (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))))
4948breq1d 5101 . . . . . . . . . . . . . 14 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎 ↔ (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))
5012, 49imbi12d 344 . . . . . . . . . . . . 13 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) ↔ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
515, 50rspcdv 3569 . . . . . . . . . . . 12 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) → (∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
524, 51rspcimdv 3567 . . . . . . . . . . 11 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5352expimpd 453 . . . . . . . . . 10 ((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5453ex 412 . . . . . . . . 9 (𝑣 ∈ ℂ → (𝑢 ∈ ℂ → (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5554com13 88 . . . . . . . 8 (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → (𝑣 ∈ ℂ → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5655ralrimdv 3130 . . . . . . 7 (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5756ex 412 . . . . . 6 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5857ralrimdv 3130 . . . . 5 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5958reximdv 3147 . . . 4 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
6059reximdv 3147 . . 3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
613, 60mpd 15 . 2 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))
621, 2, 61addcnlem 24778 1 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2111  wral 3047  wrex 3056  cop 4582   class class class wbr 5091  cfv 6481  (class class class)co 7346  cmpo 7348  cc 11001   · cmul 11008   < clt 11143  cmin 11341  +crp 12887  abscabs 15138  TopOpenctopn 17322  fldccnfld 21289   Cn ccn 23137   ×t ctx 23473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-icc 13249  df-fz 13405  df-fzo 13552  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cn 23140  df-cnp 23141  df-tx 23475  df-hmeo 23668  df-xms 24233  df-tms 24235
This theorem is referenced by:  divcn  24784  expcn  24788  divccn  24789  negcncf  24840  iihalf1cn  24851  iihalf2cn  24854  iimulcn  24859  icchmeo  24863  cnrehmeo  24876  reparphti  24921  mulcncf  25371  dvcnp2  25846  dvmulbr  25866  dvcobr  25874  cmvth  25920  dvfsumle  25951  dvfsumlem2  25958  plycn  26191  taylthlem2  26307  psercn2  26357  cxpcn  26679  efrlim  26904  rmulccn  33936  cvxpconn  35274  cvxsconn  35275  knoppcnlem10  36535  fprodcnlem  45638
  Copyright terms: Public domain W3C validator