MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpomulcn Structured version   Visualization version   GIF version

Theorem mpomulcn 24707
Description: Complex number multiplication is a continuous function. Version of mulcn 24705 using maps-to notation, which does not require ax-mulf 11186. (Contributed by GG, 16-Mar-2025.)
Hypothesis
Ref Expression
mpomulcn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
mpomulcn (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem mpomulcn
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 𝑧 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpomulcn.j . 2 𝐽 = (TopOpen‘ℂfld)
2 mpomulf 11200 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
3 mulcn2 15537 . . 3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎))
4 simplr 766 . . . . . . . . . . . 12 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → 𝑢 ∈ ℂ)
5 simplll 772 . . . . . . . . . . . . 13 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) → 𝑣 ∈ ℂ)
6 simplr 766 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢)
76fvoveq1d 7423 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑑𝑏)) = (abs‘(𝑢𝑏)))
87breq1d 5148 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑑𝑏)) < 𝑧 ↔ (abs‘(𝑢𝑏)) < 𝑧))
9 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣)
109fvoveq1d 7423 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘(𝑒𝑐)) = (abs‘(𝑣𝑐)))
1110breq1d 5148 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘(𝑒𝑐)) < 𝑤 ↔ (abs‘(𝑣𝑐)) < 𝑤))
128, 11anbi12d 630 . . . . . . . . . . . . . 14 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) ↔ ((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤)))
13 simplr 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑑 = 𝑢)
1413eqcomd 2730 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑢 = 𝑑)
15 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑒 = 𝑣)
1615eqcomd 2730 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 = 𝑒)
1714, 16oveq12d 7419 . . . . . . . . . . . . . . . . . . 19 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑑 · 𝑒))
18 simplr 766 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) → 𝑢 ∈ ℂ)
19 simplll 772 . . . . . . . . . . . . . . . . . . . 20 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → 𝑣 ∈ ℂ)
20 tru 1537 . . . . . . . . . . . . . . . . . . . . . 22
21 oveq1 7408 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
22 oveq2 7409 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
2321, 22cbvmpov 7496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
2423a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)))
25 eqidd 2725 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ⟨𝑢, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
26 mulcl 11190 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
27263adant1 1127 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
2824, 25, 27fvmpopr2d 7562 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = (𝑢 · 𝑣))
2928eqcomd 2730 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩))
3020, 29mp3an1 1444 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩))
31 df-ov 7404 . . . . . . . . . . . . . . . . . . . . 21 (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩)
3230, 31eqtr4di 2782 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3318, 19, 32syl2an2r 682 . . . . . . . . . . . . . . . . . . 19 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑢 · 𝑣) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3417, 33eqtr3d 2766 . . . . . . . . . . . . . . . . . 18 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
3534adantllr 716 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑑 · 𝑒) = (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣))
36 df-ov 7404 . . . . . . . . . . . . . . . . . . 19 (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑏, 𝑐⟩)
37 oveq1 7408 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → (𝑥 · 𝑦) = (𝑏 · 𝑦))
38 oveq2 7409 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑐 → (𝑏 · 𝑦) = (𝑏 · 𝑐))
3937, 38cbvmpov 7496 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐))
4039a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ+ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑏 ∈ ℂ, 𝑐 ∈ ℂ ↦ (𝑏 · 𝑐)))
41 eqidd 2725 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℝ+ → ⟨𝑏, 𝑐⟩ = ⟨𝑏, 𝑐⟩)
42 mulcl 11190 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) ∈ ℂ)
43423adant1 1127 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) ∈ ℂ)
4440, 41, 43fvmpopr2d 7562 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑏, 𝑐⟩) = (𝑏 · 𝑐))
4536, 44eqtr2id 2777 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))
4645ad3antlr 728 . . . . . . . . . . . . . . . . 17 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (𝑏 · 𝑐) = (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))
4735, 46oveq12d 7419 . . . . . . . . . . . . . . . 16 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((𝑑 · 𝑒) − (𝑏 · 𝑐)) = ((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐)))
4847fveq2d 6885 . . . . . . . . . . . . . . 15 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) = (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))))
4948breq1d 5148 . . . . . . . . . . . . . 14 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎 ↔ (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))
5012, 49imbi12d 344 . . . . . . . . . . . . 13 (((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) ∧ 𝑒 = 𝑣) → ((((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) ↔ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
515, 50rspcdv 3596 . . . . . . . . . . . 12 ((((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) ∧ 𝑑 = 𝑢) → (∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
524, 51rspcimdv 3594 . . . . . . . . . . 11 (((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5352expimpd 453 . . . . . . . . . 10 ((𝑣 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5453ex 412 . . . . . . . . 9 (𝑣 ∈ ℂ → (𝑢 ∈ ℂ → (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5554com13 88 . . . . . . . 8 (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → (𝑣 ∈ ℂ → (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5655ralrimdv 3144 . . . . . . 7 (((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ ∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎)) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5756ex 412 . . . . . 6 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → (𝑢 ∈ ℂ → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))))
5857ralrimdv 3144 . . . . 5 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∀𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
5958reximdv 3162 . . . 4 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
6059reximdv 3162 . . 3 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑑 ∈ ℂ ∀𝑒 ∈ ℂ (((abs‘(𝑑𝑏)) < 𝑧 ∧ (abs‘(𝑒𝑐)) < 𝑤) → (abs‘((𝑑 · 𝑒) − (𝑏 · 𝑐))) < 𝑎) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎)))
613, 60mpd 15 . 2 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑧 ∧ (abs‘(𝑣𝑐)) < 𝑤) → (abs‘((𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) − (𝑏(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑐))) < 𝑎))
621, 2, 61addcnlem 24702 1 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wtru 1534  wcel 2098  wral 3053  wrex 3062  cop 4626   class class class wbr 5138  cfv 6533  (class class class)co 7401  cmpo 7403  cc 11104   · cmul 11111   < clt 11245  cmin 11441  +crp 12971  abscabs 15178  TopOpenctopn 17366  fldccnfld 21228   Cn ccn 23050   ×t ctx 23386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-icc 13328  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-pt 17389  df-prds 17392  df-xrs 17447  df-qtop 17452  df-imas 17453  df-xps 17455  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-mulg 18986  df-cntz 19223  df-cmn 19692  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-cnfld 21229  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-cn 23053  df-cnp 23054  df-tx 23388  df-hmeo 23581  df-xms 24148  df-tms 24150
This theorem is referenced by:  divcn  24708  expcn  24712  divccn  24713  negcncf  24764  iihalf1cn  24775  iihalf2cn  24778  iimulcn  24783  icchmeo  24787  cnrehmeo  24800  reparphti  24845  mulcncf  25296  dvcnp2  25771  dvmulbr  25791  dvcobr  25799  cmvth  25845  dvfsumle  25876  dvfsumlem2  25883  plycn  26115  psercn2  26276  cxpcn  26595  efrlim  26817  rmulccn  33397  cvxpconn  34722  cvxsconn  34723  gg-taylthlem2  35657  knoppcnlem10  35868  fprodcnlem  44800
  Copyright terms: Public domain W3C validator