MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subccocl Structured version   Visualization version   GIF version

Theorem subccocl 16864
Description: A subcategory is closed under composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcidcl.j (𝜑𝐽 ∈ (Subcat‘𝐶))
subcidcl.2 (𝜑𝐽 Fn (𝑆 × 𝑆))
subcidcl.x (𝜑𝑋𝑆)
subccocl.o · = (comp‘𝐶)
subccocl.y (𝜑𝑌𝑆)
subccocl.z (𝜑𝑍𝑆)
subccocl.f (𝜑𝐹 ∈ (𝑋𝐽𝑌))
subccocl.g (𝜑𝐺 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
subccocl (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍))

Proof of Theorem subccocl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subcidcl.j . . . 4 (𝜑𝐽 ∈ (Subcat‘𝐶))
2 eqid 2825 . . . . 5 (Homf𝐶) = (Homf𝐶)
3 eqid 2825 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
4 subccocl.o . . . . 5 · = (comp‘𝐶)
5 subcrcl 16835 . . . . . 6 (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
61, 5syl 17 . . . . 5 (𝜑𝐶 ∈ Cat)
7 subcidcl.2 . . . . 5 (𝜑𝐽 Fn (𝑆 × 𝑆))
82, 3, 4, 6, 7issubc2 16855 . . . 4 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
91, 8mpbid 224 . . 3 (𝜑 → (𝐽cat (Homf𝐶) ∧ ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
109simprd 491 . 2 (𝜑 → ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
11 subcidcl.x . . 3 (𝜑𝑋𝑆)
12 subccocl.y . . . . . 6 (𝜑𝑌𝑆)
1312adantr 474 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑌𝑆)
14 subccocl.z . . . . . . 7 (𝜑𝑍𝑆)
1514ad2antrr 717 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑍𝑆)
16 subccocl.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑋𝐽𝑌))
1716ad3antrrr 721 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑋𝐽𝑌))
18 simpllr 793 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑥 = 𝑋)
19 simplr 785 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌)
2018, 19oveq12d 6928 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑥𝐽𝑦) = (𝑋𝐽𝑌))
2117, 20eleqtrrd 2909 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑥𝐽𝑦))
22 subccocl.g . . . . . . . . . 10 (𝜑𝐺 ∈ (𝑌𝐽𝑍))
2322ad4antr 724 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑌𝐽𝑍))
24 simpllr 793 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑦 = 𝑌)
25 simplr 785 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑧 = 𝑍)
2624, 25oveq12d 6928 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (𝑦𝐽𝑧) = (𝑌𝐽𝑍))
2723, 26eleqtrrd 2909 . . . . . . . 8 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑦𝐽𝑧))
28 simp-5r 807 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑥 = 𝑋)
29 simp-4r 803 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑦 = 𝑌)
3028, 29opeq12d 4633 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
31 simpllr 793 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑧 = 𝑍)
3230, 31oveq12d 6928 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑋, 𝑌· 𝑍))
33 simpr 479 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺)
34 simplr 785 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹)
3532, 33, 34oveq123d 6931 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
3628, 31oveq12d 6928 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑥𝐽𝑧) = (𝑋𝐽𝑍))
3735, 36eleq12d 2900 . . . . . . . 8 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧) ↔ (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
3827, 37rspcdv 3529 . . . . . . 7 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
3921, 38rspcimdv 3527 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
4015, 39rspcimdv 3527 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
4113, 40rspcimdv 3527 . . . 4 ((𝜑𝑥 = 𝑋) → (∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
4241adantld 486 . . 3 ((𝜑𝑥 = 𝑋) → ((((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
4311, 42rspcimdv 3527 . 2 (𝜑 → (∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
4410, 43mpd 15 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wral 3117  cop 4405   class class class wbr 4875   × cxp 5344   Fn wfn 6122  cfv 6127  (class class class)co 6910  compcco 16324  Catccat 16684  Idccid 16685  Homf chomf 16686  cat cssc 16826  Subcatcsubc 16828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-pm 8130  df-ixp 8182  df-ssc 16829  df-subc 16831
This theorem is referenced by:  subccatid  16865  funcres  16915
  Copyright terms: Public domain W3C validator