| Step | Hyp | Ref
| Expression |
| 1 | | subcidcl.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| 2 | | eqid 2737 |
. . . . 5
⊢
(Homf ‘𝐶) = (Homf ‘𝐶) |
| 3 | | eqid 2737 |
. . . . 5
⊢
(Id‘𝐶) =
(Id‘𝐶) |
| 4 | | subccocl.o |
. . . . 5
⊢ · =
(comp‘𝐶) |
| 5 | | subcrcl 17860 |
. . . . . 6
⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) |
| 6 | 1, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | | subcidcl.2 |
. . . . 5
⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 8 | 2, 3, 4, 6, 7 | issubc2 17881 |
. . . 4
⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
| 9 | 1, 8 | mpbid 232 |
. . 3
⊢ (𝜑 → (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
| 10 | 9 | simprd 495 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
| 11 | | subcidcl.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| 12 | | subccocl.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| 13 | 12 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑌 ∈ 𝑆) |
| 14 | | subccocl.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ 𝑆) |
| 15 | 14 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑍 ∈ 𝑆) |
| 16 | | subccocl.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) |
| 17 | 16 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑋𝐽𝑌)) |
| 18 | | simpllr 776 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑥 = 𝑋) |
| 19 | | simplr 769 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌) |
| 20 | 18, 19 | oveq12d 7449 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑥𝐽𝑦) = (𝑋𝐽𝑌)) |
| 21 | 17, 20 | eleqtrrd 2844 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑥𝐽𝑦)) |
| 22 | | subccocl.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ (𝑌𝐽𝑍)) |
| 23 | 22 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑌𝐽𝑍)) |
| 24 | | simpllr 776 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑦 = 𝑌) |
| 25 | | simplr 769 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑧 = 𝑍) |
| 26 | 24, 25 | oveq12d 7449 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (𝑦𝐽𝑧) = (𝑌𝐽𝑍)) |
| 27 | 23, 26 | eleqtrrd 2844 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑦𝐽𝑧)) |
| 28 | | simp-5r 786 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑥 = 𝑋) |
| 29 | | simp-4r 784 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑦 = 𝑌) |
| 30 | 28, 29 | opeq12d 4881 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 〈𝑥, 𝑦〉 = 〈𝑋, 𝑌〉) |
| 31 | | simpllr 776 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑧 = 𝑍) |
| 32 | 30, 31 | oveq12d 7449 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (〈𝑥, 𝑦〉 · 𝑧) = (〈𝑋, 𝑌〉 · 𝑍)) |
| 33 | | simpr 484 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
| 34 | | simplr 769 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹) |
| 35 | 32, 33, 34 | oveq123d 7452 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 36 | 28, 31 | oveq12d 7449 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑥𝐽𝑧) = (𝑋𝐽𝑍)) |
| 37 | 35, 36 | eleq12d 2835 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧) ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐽𝑍))) |
| 38 | 27, 37 | rspcdv 3614 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐽𝑍))) |
| 39 | 21, 38 | rspcimdv 3612 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐽𝑍))) |
| 40 | 15, 39 | rspcimdv 3612 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐽𝑍))) |
| 41 | 13, 40 | rspcimdv 3612 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐽𝑍))) |
| 42 | 41 | adantld 490 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐽𝑍))) |
| 43 | 11, 42 | rspcimdv 3612 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐽𝑍))) |
| 44 | 10, 43 | mpd 15 |
1
⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐽𝑍)) |