MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subccocl Structured version   Visualization version   GIF version

Theorem subccocl 17476
Description: A subcategory is closed under composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcidcl.j (𝜑𝐽 ∈ (Subcat‘𝐶))
subcidcl.2 (𝜑𝐽 Fn (𝑆 × 𝑆))
subcidcl.x (𝜑𝑋𝑆)
subccocl.o · = (comp‘𝐶)
subccocl.y (𝜑𝑌𝑆)
subccocl.z (𝜑𝑍𝑆)
subccocl.f (𝜑𝐹 ∈ (𝑋𝐽𝑌))
subccocl.g (𝜑𝐺 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
subccocl (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍))

Proof of Theorem subccocl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subcidcl.j . . . 4 (𝜑𝐽 ∈ (Subcat‘𝐶))
2 eqid 2738 . . . . 5 (Homf𝐶) = (Homf𝐶)
3 eqid 2738 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
4 subccocl.o . . . . 5 · = (comp‘𝐶)
5 subcrcl 17445 . . . . . 6 (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
61, 5syl 17 . . . . 5 (𝜑𝐶 ∈ Cat)
7 subcidcl.2 . . . . 5 (𝜑𝐽 Fn (𝑆 × 𝑆))
82, 3, 4, 6, 7issubc2 17467 . . . 4 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
91, 8mpbid 231 . . 3 (𝜑 → (𝐽cat (Homf𝐶) ∧ ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
109simprd 495 . 2 (𝜑 → ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
11 subcidcl.x . . 3 (𝜑𝑋𝑆)
12 subccocl.y . . . . . 6 (𝜑𝑌𝑆)
1312adantr 480 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑌𝑆)
14 subccocl.z . . . . . . 7 (𝜑𝑍𝑆)
1514ad2antrr 722 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑍𝑆)
16 subccocl.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑋𝐽𝑌))
1716ad3antrrr 726 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑋𝐽𝑌))
18 simpllr 772 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑥 = 𝑋)
19 simplr 765 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌)
2018, 19oveq12d 7273 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑥𝐽𝑦) = (𝑋𝐽𝑌))
2117, 20eleqtrrd 2842 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝐹 ∈ (𝑥𝐽𝑦))
22 subccocl.g . . . . . . . . . 10 (𝜑𝐺 ∈ (𝑌𝐽𝑍))
2322ad4antr 728 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑌𝐽𝑍))
24 simpllr 772 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑦 = 𝑌)
25 simplr 765 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝑧 = 𝑍)
2624, 25oveq12d 7273 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (𝑦𝐽𝑧) = (𝑌𝐽𝑍))
2723, 26eleqtrrd 2842 . . . . . . . 8 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → 𝐺 ∈ (𝑦𝐽𝑧))
28 simp-5r 782 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑥 = 𝑋)
29 simp-4r 780 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑦 = 𝑌)
3028, 29opeq12d 4809 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
31 simpllr 772 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑧 = 𝑍)
3230, 31oveq12d 7273 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑋, 𝑌· 𝑍))
33 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺)
34 simplr 765 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → 𝑓 = 𝐹)
3532, 33, 34oveq123d 7276 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
3628, 31oveq12d 7273 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → (𝑥𝐽𝑧) = (𝑋𝐽𝑍))
3735, 36eleq12d 2833 . . . . . . . 8 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) ∧ 𝑔 = 𝐺) → ((𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧) ↔ (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
3827, 37rspcdv 3543 . . . . . . 7 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑓 = 𝐹) → (∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
3921, 38rspcimdv 3541 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
4015, 39rspcimdv 3541 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
4113, 40rspcimdv 3541 . . . 4 ((𝜑𝑥 = 𝑋) → (∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
4241adantld 490 . . 3 ((𝜑𝑥 = 𝑋) → ((((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
4311, 42rspcimdv 3541 . 2 (𝜑 → (∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍)))
4410, 43mpd 15 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐽𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cop 4564   class class class wbr 5070   × cxp 5578   Fn wfn 6413  cfv 6418  (class class class)co 7255  compcco 16900  Catccat 17290  Idccid 17291  Homf chomf 17292  cat cssc 17436  Subcatcsubc 17438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-pm 8576  df-ixp 8644  df-ssc 17439  df-subc 17441
This theorem is referenced by:  subccatid  17477  funcres  17527
  Copyright terms: Public domain W3C validator