Step | Hyp | Ref
| Expression |
1 | | cfsetsnfsetfv.f |
. . 3
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} |
2 | | cfsetsnfsetfv.g |
. . 3
⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} |
3 | | cfsetsnfsetfv.h |
. . 3
⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) |
4 | 1, 2, 3 | cfsetsnfsetf 44439 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺⟶𝐹) |
5 | 1, 2, 3 | cfsetsnfsetfv 44438 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑚 ∈ 𝐺) → (𝐻‘𝑚) = (𝑎 ∈ 𝐴 ↦ (𝑚‘𝑌))) |
6 | 5 | ad2ant2r 743 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → (𝐻‘𝑚) = (𝑎 ∈ 𝐴 ↦ (𝑚‘𝑌))) |
7 | 1, 2, 3 | cfsetsnfsetfv 44438 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ 𝐺) → (𝐻‘𝑛) = (𝑎 ∈ 𝐴 ↦ (𝑛‘𝑌))) |
8 | 7 | ad2ant2rl 745 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → (𝐻‘𝑛) = (𝑎 ∈ 𝐴 ↦ (𝑛‘𝑌))) |
9 | 6, 8 | eqeq12d 2754 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → ((𝐻‘𝑚) = (𝐻‘𝑛) ↔ (𝑎 ∈ 𝐴 ↦ (𝑚‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑛‘𝑌)))) |
10 | | fvexd 6771 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) ∧ 𝑎 ∈ 𝐴) → (𝑚‘𝑌) ∈ V) |
11 | 10 | ralrimiva 3107 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → ∀𝑎 ∈ 𝐴 (𝑚‘𝑌) ∈ V) |
12 | | mpteqb 6876 |
. . . . . 6
⊢
(∀𝑎 ∈
𝐴 (𝑚‘𝑌) ∈ V → ((𝑎 ∈ 𝐴 ↦ (𝑚‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑛‘𝑌)) ↔ ∀𝑎 ∈ 𝐴 (𝑚‘𝑌) = (𝑛‘𝑌))) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → ((𝑎 ∈ 𝐴 ↦ (𝑚‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑛‘𝑌)) ↔ ∀𝑎 ∈ 𝐴 (𝑚‘𝑌) = (𝑛‘𝑌))) |
14 | | simplr 765 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → 𝑌 ∈ 𝐴) |
15 | | idd 24 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) ∧ 𝑎 = 𝑌) → ((𝑚‘𝑌) = (𝑛‘𝑌) → (𝑚‘𝑌) = (𝑛‘𝑌))) |
16 | 14, 15 | rspcimdv 3541 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → (∀𝑎 ∈ 𝐴 (𝑚‘𝑌) = (𝑛‘𝑌) → (𝑚‘𝑌) = (𝑛‘𝑌))) |
17 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑚 ∈ V |
18 | | feq1 6565 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑚 → (𝑥:{𝑌}⟶𝐵 ↔ 𝑚:{𝑌}⟶𝐵)) |
19 | 17, 18, 2 | elab2 3606 |
. . . . . . . . 9
⊢ (𝑚 ∈ 𝐺 ↔ 𝑚:{𝑌}⟶𝐵) |
20 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑛 ∈ V |
21 | | feq1 6565 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑛 → (𝑥:{𝑌}⟶𝐵 ↔ 𝑛:{𝑌}⟶𝐵)) |
22 | 20, 21, 2 | elab2 3606 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐺 ↔ 𝑛:{𝑌}⟶𝐵) |
23 | 19, 22 | anbi12i 626 |
. . . . . . . 8
⊢ ((𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺) ↔ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵)) |
24 | | simp3 1136 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → (𝑚‘𝑌) = (𝑛‘𝑌)) |
25 | | simp1r 1196 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → 𝑌 ∈ 𝐴) |
26 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑌 → (𝑚‘𝑦) = (𝑚‘𝑌)) |
27 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑌 → (𝑛‘𝑦) = (𝑛‘𝑌)) |
28 | 26, 27 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑌 → ((𝑚‘𝑦) = (𝑛‘𝑦) ↔ (𝑚‘𝑌) = (𝑛‘𝑌))) |
29 | 28 | ralsng 4606 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ 𝐴 → (∀𝑦 ∈ {𝑌} (𝑚‘𝑦) = (𝑛‘𝑦) ↔ (𝑚‘𝑌) = (𝑛‘𝑌))) |
30 | 25, 29 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → (∀𝑦 ∈ {𝑌} (𝑚‘𝑦) = (𝑛‘𝑦) ↔ (𝑚‘𝑌) = (𝑛‘𝑌))) |
31 | 24, 30 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → ∀𝑦 ∈ {𝑌} (𝑚‘𝑦) = (𝑛‘𝑦)) |
32 | | ffn 6584 |
. . . . . . . . . . . . 13
⊢ (𝑚:{𝑌}⟶𝐵 → 𝑚 Fn {𝑌}) |
33 | | ffn 6584 |
. . . . . . . . . . . . 13
⊢ (𝑛:{𝑌}⟶𝐵 → 𝑛 Fn {𝑌}) |
34 | 32, 33 | anim12i 612 |
. . . . . . . . . . . 12
⊢ ((𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) → (𝑚 Fn {𝑌} ∧ 𝑛 Fn {𝑌})) |
35 | 34 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → (𝑚 Fn {𝑌} ∧ 𝑛 Fn {𝑌})) |
36 | | eqfnfv 6891 |
. . . . . . . . . . 11
⊢ ((𝑚 Fn {𝑌} ∧ 𝑛 Fn {𝑌}) → (𝑚 = 𝑛 ↔ ∀𝑦 ∈ {𝑌} (𝑚‘𝑦) = (𝑛‘𝑦))) |
37 | 35, 36 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → (𝑚 = 𝑛 ↔ ∀𝑦 ∈ {𝑌} (𝑚‘𝑦) = (𝑛‘𝑦))) |
38 | 31, 37 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → 𝑚 = 𝑛) |
39 | 38 | 3exp 1117 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → ((𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) → ((𝑚‘𝑌) = (𝑛‘𝑌) → 𝑚 = 𝑛))) |
40 | 23, 39 | syl5bi 241 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → ((𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺) → ((𝑚‘𝑌) = (𝑛‘𝑌) → 𝑚 = 𝑛))) |
41 | 40 | imp 406 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → ((𝑚‘𝑌) = (𝑛‘𝑌) → 𝑚 = 𝑛)) |
42 | 16, 41 | syld 47 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → (∀𝑎 ∈ 𝐴 (𝑚‘𝑌) = (𝑛‘𝑌) → 𝑚 = 𝑛)) |
43 | 13, 42 | sylbid 239 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → ((𝑎 ∈ 𝐴 ↦ (𝑚‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑛‘𝑌)) → 𝑚 = 𝑛)) |
44 | 9, 43 | sylbid 239 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → ((𝐻‘𝑚) = (𝐻‘𝑛) → 𝑚 = 𝑛)) |
45 | 44 | ralrimivva 3114 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → ∀𝑚 ∈ 𝐺 ∀𝑛 ∈ 𝐺 ((𝐻‘𝑚) = (𝐻‘𝑛) → 𝑚 = 𝑛)) |
46 | | dff13 7109 |
. 2
⊢ (𝐻:𝐺–1-1→𝐹 ↔ (𝐻:𝐺⟶𝐹 ∧ ∀𝑚 ∈ 𝐺 ∀𝑛 ∈ 𝐺 ((𝐻‘𝑚) = (𝐻‘𝑛) → 𝑚 = 𝑛))) |
47 | 4, 45, 46 | sylanbrc 582 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1→𝐹) |