| Step | Hyp | Ref
| Expression |
| 1 | | cfsetsnfsetfv.f |
. . 3
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} |
| 2 | | cfsetsnfsetfv.g |
. . 3
⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} |
| 3 | | cfsetsnfsetfv.h |
. . 3
⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) |
| 4 | 1, 2, 3 | cfsetsnfsetf 47070 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺⟶𝐹) |
| 5 | 1, 2, 3 | cfsetsnfsetfv 47069 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑚 ∈ 𝐺) → (𝐻‘𝑚) = (𝑎 ∈ 𝐴 ↦ (𝑚‘𝑌))) |
| 6 | 5 | ad2ant2r 747 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → (𝐻‘𝑚) = (𝑎 ∈ 𝐴 ↦ (𝑚‘𝑌))) |
| 7 | 1, 2, 3 | cfsetsnfsetfv 47069 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑛 ∈ 𝐺) → (𝐻‘𝑛) = (𝑎 ∈ 𝐴 ↦ (𝑛‘𝑌))) |
| 8 | 7 | ad2ant2rl 749 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → (𝐻‘𝑛) = (𝑎 ∈ 𝐴 ↦ (𝑛‘𝑌))) |
| 9 | 6, 8 | eqeq12d 2753 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → ((𝐻‘𝑚) = (𝐻‘𝑛) ↔ (𝑎 ∈ 𝐴 ↦ (𝑚‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑛‘𝑌)))) |
| 10 | | fvexd 6921 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) ∧ 𝑎 ∈ 𝐴) → (𝑚‘𝑌) ∈ V) |
| 11 | 10 | ralrimiva 3146 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → ∀𝑎 ∈ 𝐴 (𝑚‘𝑌) ∈ V) |
| 12 | | mpteqb 7035 |
. . . . . 6
⊢
(∀𝑎 ∈
𝐴 (𝑚‘𝑌) ∈ V → ((𝑎 ∈ 𝐴 ↦ (𝑚‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑛‘𝑌)) ↔ ∀𝑎 ∈ 𝐴 (𝑚‘𝑌) = (𝑛‘𝑌))) |
| 13 | 11, 12 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → ((𝑎 ∈ 𝐴 ↦ (𝑚‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑛‘𝑌)) ↔ ∀𝑎 ∈ 𝐴 (𝑚‘𝑌) = (𝑛‘𝑌))) |
| 14 | | simplr 769 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → 𝑌 ∈ 𝐴) |
| 15 | | idd 24 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) ∧ 𝑎 = 𝑌) → ((𝑚‘𝑌) = (𝑛‘𝑌) → (𝑚‘𝑌) = (𝑛‘𝑌))) |
| 16 | 14, 15 | rspcimdv 3612 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → (∀𝑎 ∈ 𝐴 (𝑚‘𝑌) = (𝑛‘𝑌) → (𝑚‘𝑌) = (𝑛‘𝑌))) |
| 17 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑚 ∈ V |
| 18 | | feq1 6716 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑚 → (𝑥:{𝑌}⟶𝐵 ↔ 𝑚:{𝑌}⟶𝐵)) |
| 19 | 17, 18, 2 | elab2 3682 |
. . . . . . . . 9
⊢ (𝑚 ∈ 𝐺 ↔ 𝑚:{𝑌}⟶𝐵) |
| 20 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑛 ∈ V |
| 21 | | feq1 6716 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑛 → (𝑥:{𝑌}⟶𝐵 ↔ 𝑛:{𝑌}⟶𝐵)) |
| 22 | 20, 21, 2 | elab2 3682 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐺 ↔ 𝑛:{𝑌}⟶𝐵) |
| 23 | 19, 22 | anbi12i 628 |
. . . . . . . 8
⊢ ((𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺) ↔ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵)) |
| 24 | | simp3 1139 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → (𝑚‘𝑌) = (𝑛‘𝑌)) |
| 25 | | simp1r 1199 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → 𝑌 ∈ 𝐴) |
| 26 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑌 → (𝑚‘𝑦) = (𝑚‘𝑌)) |
| 27 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑌 → (𝑛‘𝑦) = (𝑛‘𝑌)) |
| 28 | 26, 27 | eqeq12d 2753 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑌 → ((𝑚‘𝑦) = (𝑛‘𝑦) ↔ (𝑚‘𝑌) = (𝑛‘𝑌))) |
| 29 | 28 | ralsng 4675 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ 𝐴 → (∀𝑦 ∈ {𝑌} (𝑚‘𝑦) = (𝑛‘𝑦) ↔ (𝑚‘𝑌) = (𝑛‘𝑌))) |
| 30 | 25, 29 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → (∀𝑦 ∈ {𝑌} (𝑚‘𝑦) = (𝑛‘𝑦) ↔ (𝑚‘𝑌) = (𝑛‘𝑌))) |
| 31 | 24, 30 | mpbird 257 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → ∀𝑦 ∈ {𝑌} (𝑚‘𝑦) = (𝑛‘𝑦)) |
| 32 | | ffn 6736 |
. . . . . . . . . . . . 13
⊢ (𝑚:{𝑌}⟶𝐵 → 𝑚 Fn {𝑌}) |
| 33 | | ffn 6736 |
. . . . . . . . . . . . 13
⊢ (𝑛:{𝑌}⟶𝐵 → 𝑛 Fn {𝑌}) |
| 34 | 32, 33 | anim12i 613 |
. . . . . . . . . . . 12
⊢ ((𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) → (𝑚 Fn {𝑌} ∧ 𝑛 Fn {𝑌})) |
| 35 | 34 | 3ad2ant2 1135 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → (𝑚 Fn {𝑌} ∧ 𝑛 Fn {𝑌})) |
| 36 | | eqfnfv 7051 |
. . . . . . . . . . 11
⊢ ((𝑚 Fn {𝑌} ∧ 𝑛 Fn {𝑌}) → (𝑚 = 𝑛 ↔ ∀𝑦 ∈ {𝑌} (𝑚‘𝑦) = (𝑛‘𝑦))) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → (𝑚 = 𝑛 ↔ ∀𝑦 ∈ {𝑌} (𝑚‘𝑦) = (𝑛‘𝑦))) |
| 38 | 31, 37 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) ∧ (𝑚‘𝑌) = (𝑛‘𝑌)) → 𝑚 = 𝑛) |
| 39 | 38 | 3exp 1120 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → ((𝑚:{𝑌}⟶𝐵 ∧ 𝑛:{𝑌}⟶𝐵) → ((𝑚‘𝑌) = (𝑛‘𝑌) → 𝑚 = 𝑛))) |
| 40 | 23, 39 | biimtrid 242 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → ((𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺) → ((𝑚‘𝑌) = (𝑛‘𝑌) → 𝑚 = 𝑛))) |
| 41 | 40 | imp 406 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → ((𝑚‘𝑌) = (𝑛‘𝑌) → 𝑚 = 𝑛)) |
| 42 | 16, 41 | syld 47 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → (∀𝑎 ∈ 𝐴 (𝑚‘𝑌) = (𝑛‘𝑌) → 𝑚 = 𝑛)) |
| 43 | 13, 42 | sylbid 240 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → ((𝑎 ∈ 𝐴 ↦ (𝑚‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑛‘𝑌)) → 𝑚 = 𝑛)) |
| 44 | 9, 43 | sylbid 240 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ (𝑚 ∈ 𝐺 ∧ 𝑛 ∈ 𝐺)) → ((𝐻‘𝑚) = (𝐻‘𝑛) → 𝑚 = 𝑛)) |
| 45 | 44 | ralrimivva 3202 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → ∀𝑚 ∈ 𝐺 ∀𝑛 ∈ 𝐺 ((𝐻‘𝑚) = (𝐻‘𝑛) → 𝑚 = 𝑛)) |
| 46 | | dff13 7275 |
. 2
⊢ (𝐻:𝐺–1-1→𝐹 ↔ (𝐻:𝐺⟶𝐹 ∧ ∀𝑚 ∈ 𝐺 ∀𝑛 ∈ 𝐺 ((𝐻‘𝑚) = (𝐻‘𝑛) → 𝑚 = 𝑛))) |
| 47 | 4, 45, 46 | sylanbrc 583 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1→𝐹) |