| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fullfo | Structured version Visualization version GIF version | ||
| Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| isfull.b | ⊢ 𝐵 = (Base‘𝐶) |
| isfull.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| isfull.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| fullfo.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
| fullfo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| fullfo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fullfo | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullfo.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
| 2 | isfull.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | isfull.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 4 | isfull.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | 2, 3, 4 | isfull2 17817 | . . . 4 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 6 | 5 | simprbi 496 | . . 3 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
| 8 | fullfo.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | fullfo.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑌 ∈ 𝐵) |
| 11 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 12 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 13 | 11, 12 | oveq12d 7364 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌)) |
| 14 | 11, 12 | oveq12d 7364 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) |
| 15 | 11 | fveq2d 6826 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 16 | 12 | fveq2d 6826 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
| 17 | 15, 16 | oveq12d 7364 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 18 | 13, 14, 17 | foeq123d 6756 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
| 19 | 10, 18 | rspcdv 3569 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
| 20 | 8, 19 | rspcimdv 3567 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
| 21 | 7, 20 | mpd 15 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–onto→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Hom chom 17169 Func cfunc 17758 Full cful 17808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-func 17762 df-full 17810 |
| This theorem is referenced by: fulli 17819 ffthf1o 17825 fulloppc 17828 cofull 17840 imasubc 49182 |
| Copyright terms: Public domain | W3C validator |