Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fthf1 | Structured version Visualization version GIF version |
Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
isfth.b | ⊢ 𝐵 = (Base‘𝐶) |
isfth.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isfth.j | ⊢ 𝐽 = (Hom ‘𝐷) |
fthf1.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
fthf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
fthf1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
fthf1 | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fthf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
2 | isfth.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
3 | isfth.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | isfth.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
5 | 2, 3, 4 | isfth2 17631 | . . . 4 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
6 | 5 | simprbi 497 | . . 3 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
8 | fthf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | fthf1.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑌 ∈ 𝐵) |
11 | simplr 766 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
12 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
13 | 11, 12 | oveq12d 7293 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌)) |
14 | 11, 12 | oveq12d 7293 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) |
15 | 11 | fveq2d 6778 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
16 | 12 | fveq2d 6778 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
17 | 15, 16 | oveq12d 7293 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
18 | 13, 14, 17 | f1eq123d 6708 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
19 | 10, 18 | rspcdv 3553 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
20 | 8, 19 | rspcimdv 3551 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
21 | 7, 20 | mpd 15 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 –1-1→wf1 6430 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Hom chom 16973 Func cfunc 17569 Faith cfth 17619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-ixp 8686 df-func 17573 df-fth 17621 |
This theorem is referenced by: fthi 17634 ffthf1o 17635 fthoppc 17639 cofth 17651 |
Copyright terms: Public domain | W3C validator |