MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthf1 Structured version   Visualization version   GIF version

Theorem fthf1 17828
Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfth.b 𝐵 = (Base‘𝐶)
isfth.h 𝐻 = (Hom ‘𝐶)
isfth.j 𝐽 = (Hom ‘𝐷)
fthf1.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthf1.x (𝜑𝑋𝐵)
fthf1.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fthf1 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)))

Proof of Theorem fthf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fthf1.f . . 3 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
2 isfth.b . . . . 5 𝐵 = (Base‘𝐶)
3 isfth.h . . . . 5 𝐻 = (Hom ‘𝐶)
4 isfth.j . . . . 5 𝐽 = (Hom ‘𝐷)
52, 3, 4isfth2 17826 . . . 4 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
65simprbi 496 . . 3 (𝐹(𝐶 Faith 𝐷)𝐺 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))
71, 6syl 17 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))
8 fthf1.x . . 3 (𝜑𝑋𝐵)
9 fthf1.y . . . . 5 (𝜑𝑌𝐵)
109adantr 480 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
11 simplr 768 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋)
12 simpr 484 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌)
1311, 12oveq12d 7370 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌))
1411, 12oveq12d 7370 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1511fveq2d 6832 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝐹𝑥) = (𝐹𝑋))
1612fveq2d 6832 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝐹𝑦) = (𝐹𝑌))
1715, 16oveq12d 7370 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑋)𝐽(𝐹𝑌)))
1813, 14, 17f1eq123d 6760 . . . 4 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌))))
1910, 18rspcdv 3565 . . 3 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌))))
208, 19rspcimdv 3563 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌))))
217, 20mpd 15 1 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5093  1-1wf1 6483  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174   Func cfunc 17763   Faith cfth 17814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828  df-func 17767  df-fth 17816
This theorem is referenced by:  fthi  17829  ffthf1o  17830  fthoppc  17834  cofth  17846
  Copyright terms: Public domain W3C validator