![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fthf1 | Structured version Visualization version GIF version |
Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
isfth.b | ⊢ 𝐵 = (Base‘𝐶) |
isfth.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isfth.j | ⊢ 𝐽 = (Hom ‘𝐷) |
fthf1.f | ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
fthf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
fthf1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
fthf1 | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fthf1.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | |
2 | isfth.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
3 | isfth.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | isfth.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
5 | 2, 3, 4 | isfth2 17903 | . . . 4 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
6 | 5 | simprbi 496 | . . 3 ⊢ (𝐹(𝐶 Faith 𝐷)𝐺 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
8 | fthf1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | fthf1.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑌 ∈ 𝐵) |
11 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
12 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
13 | 11, 12 | oveq12d 7438 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌)) |
14 | 11, 12 | oveq12d 7438 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) |
15 | 11 | fveq2d 6901 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
16 | 12 | fveq2d 6901 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
17 | 15, 16 | oveq12d 7438 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
18 | 13, 14, 17 | f1eq123d 6831 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ↔ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
19 | 10, 18 | rspcdv 3601 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
20 | 8, 19 | rspcimdv 3599 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹‘𝑥)𝐽(𝐹‘𝑦)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
21 | 7, 20 | mpd 15 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 class class class wbr 5148 –1-1→wf1 6545 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 Hom chom 17243 Func cfunc 17839 Faith cfth 17891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-map 8846 df-ixp 8916 df-func 17843 df-fth 17893 |
This theorem is referenced by: fthi 17906 ffthf1o 17907 fthoppc 17911 cofth 17923 |
Copyright terms: Public domain | W3C validator |