MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthf1 Structured version   Visualization version   GIF version

Theorem fthf1 17809
Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfth.b 𝐵 = (Base‘𝐶)
isfth.h 𝐻 = (Hom ‘𝐶)
isfth.j 𝐽 = (Hom ‘𝐷)
fthf1.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthf1.x (𝜑𝑋𝐵)
fthf1.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fthf1 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)))

Proof of Theorem fthf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fthf1.f . . 3 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
2 isfth.b . . . . 5 𝐵 = (Base‘𝐶)
3 isfth.h . . . . 5 𝐻 = (Hom ‘𝐶)
4 isfth.j . . . . 5 𝐽 = (Hom ‘𝐷)
52, 3, 4isfth2 17807 . . . 4 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
65simprbi 498 . . 3 (𝐹(𝐶 Faith 𝐷)𝐺 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))
71, 6syl 17 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))
8 fthf1.x . . 3 (𝜑𝑋𝐵)
9 fthf1.y . . . . 5 (𝜑𝑌𝐵)
109adantr 482 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
11 simplr 768 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋)
12 simpr 486 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌)
1311, 12oveq12d 7376 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌))
1411, 12oveq12d 7376 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1511fveq2d 6847 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝐹𝑥) = (𝐹𝑋))
1612fveq2d 6847 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝐹𝑦) = (𝐹𝑌))
1715, 16oveq12d 7376 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑋)𝐽(𝐹𝑌)))
1813, 14, 17f1eq123d 6777 . . . 4 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌))))
1910, 18rspcdv 3572 . . 3 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌))))
208, 19rspcimdv 3570 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌))))
217, 20mpd 15 1 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3061   class class class wbr 5106  1-1wf1 6494  cfv 6497  (class class class)co 7358  Basecbs 17088  Hom chom 17149   Func cfunc 17745   Faith cfth 17795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-map 8770  df-ixp 8839  df-func 17749  df-fth 17797
This theorem is referenced by:  fthi  17810  ffthf1o  17811  fthoppc  17815  cofth  17827
  Copyright terms: Public domain W3C validator