MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthf1 Structured version   Visualization version   GIF version

Theorem fthf1 17971
Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfth.b 𝐵 = (Base‘𝐶)
isfth.h 𝐻 = (Hom ‘𝐶)
isfth.j 𝐽 = (Hom ‘𝐷)
fthf1.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthf1.x (𝜑𝑋𝐵)
fthf1.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fthf1 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)))

Proof of Theorem fthf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fthf1.f . . 3 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
2 isfth.b . . . . 5 𝐵 = (Base‘𝐶)
3 isfth.h . . . . 5 𝐻 = (Hom ‘𝐶)
4 isfth.j . . . . 5 𝐽 = (Hom ‘𝐷)
52, 3, 4isfth2 17969 . . . 4 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
65simprbi 496 . . 3 (𝐹(𝐶 Faith 𝐷)𝐺 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))
71, 6syl 17 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))
8 fthf1.x . . 3 (𝜑𝑋𝐵)
9 fthf1.y . . . . 5 (𝜑𝑌𝐵)
109adantr 480 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
11 simplr 769 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋)
12 simpr 484 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌)
1311, 12oveq12d 7449 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌))
1411, 12oveq12d 7449 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1511fveq2d 6911 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝐹𝑥) = (𝐹𝑋))
1612fveq2d 6911 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝐹𝑦) = (𝐹𝑌))
1715, 16oveq12d 7449 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑋)𝐽(𝐹𝑌)))
1813, 14, 17f1eq123d 6841 . . . 4 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌))))
1910, 18rspcdv 3614 . . 3 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌))))
208, 19rspcimdv 3612 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌))))
217, 20mpd 15 1 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  1-1wf1 6560  cfv 6563  (class class class)co 7431  Basecbs 17245  Hom chom 17309   Func cfunc 17905   Faith cfth 17957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-ixp 8937  df-func 17909  df-fth 17959
This theorem is referenced by:  fthi  17972  ffthf1o  17973  fthoppc  17977  cofth  17989
  Copyright terms: Public domain W3C validator