MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcco Structured version   Visualization version   GIF version

Theorem funcco 17778
Description: A functor maps composition in the source category to composition in the target. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcco.b 𝐵 = (Base‘𝐷)
funcco.h 𝐻 = (Hom ‘𝐷)
funcco.o · = (comp‘𝐷)
funcco.O 𝑂 = (comp‘𝐸)
funcco.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
funcco.x (𝜑𝑋𝐵)
funcco.y (𝜑𝑌𝐵)
funcco.z (𝜑𝑍𝐵)
funcco.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
funcco.n (𝜑𝑁 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
funcco (𝜑 → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀)))

Proof of Theorem funcco
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcco.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2 funcco.b . . . . 5 𝐵 = (Base‘𝐷)
3 eqid 2731 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
4 funcco.h . . . . 5 𝐻 = (Hom ‘𝐷)
5 eqid 2731 . . . . 5 (Hom ‘𝐸) = (Hom ‘𝐸)
6 eqid 2731 . . . . 5 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2731 . . . . 5 (Id‘𝐸) = (Id‘𝐸)
8 funcco.o . . . . 5 · = (comp‘𝐷)
9 funcco.O . . . . 5 𝑂 = (comp‘𝐸)
10 df-br 5092 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
111, 10sylib 218 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
12 funcrcl 17770 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1311, 12syl 17 . . . . . 6 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1413simpld 494 . . . . 5 (𝜑𝐷 ∈ Cat)
1513simprd 495 . . . . 5 (𝜑𝐸 ∈ Cat)
162, 3, 4, 5, 6, 7, 8, 9, 14, 15isfunc 17771 . . . 4 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
171, 16mpbid 232 . . 3 (𝜑 → (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))))
1817simp3d 1144 . 2 (𝜑 → ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
19 funcco.x . . 3 (𝜑𝑋𝐵)
20 funcco.y . . . . . 6 (𝜑𝑌𝐵)
2120adantr 480 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
22 funcco.z . . . . . . 7 (𝜑𝑍𝐵)
2322ad2antrr 726 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑍𝐵)
24 funcco.m . . . . . . . . 9 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
2524ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑀 ∈ (𝑋𝐻𝑌))
26 simpllr 775 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑥 = 𝑋)
27 simplr 768 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌)
2826, 27oveq12d 7364 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
2925, 28eleqtrrd 2834 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑀 ∈ (𝑥𝐻𝑦))
30 funcco.n . . . . . . . . . 10 (𝜑𝑁 ∈ (𝑌𝐻𝑍))
3130ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → 𝑁 ∈ (𝑌𝐻𝑍))
32 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → 𝑦 = 𝑌)
33 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → 𝑧 = 𝑍)
3432, 33oveq12d 7364 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → (𝑦𝐻𝑧) = (𝑌𝐻𝑍))
3531, 34eleqtrrd 2834 . . . . . . . 8 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → 𝑁 ∈ (𝑦𝐻𝑧))
36 simp-5r 785 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑥 = 𝑋)
37 simpllr 775 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑧 = 𝑍)
3836, 37oveq12d 7364 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝑥𝐺𝑧) = (𝑋𝐺𝑍))
39 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑦 = 𝑌)
4036, 39opeq12d 4833 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
4140, 37oveq12d 7364 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑋, 𝑌· 𝑍))
42 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁)
43 simplr 768 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑚 = 𝑀)
4441, 42, 43oveq123d 7367 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝑛(⟨𝑥, 𝑦· 𝑧)𝑚) = (𝑁(⟨𝑋, 𝑌· 𝑍)𝑀))
4538, 44fveq12d 6829 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)))
4636fveq2d 6826 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝐹𝑥) = (𝐹𝑋))
4739fveq2d 6826 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝐹𝑦) = (𝐹𝑌))
4846, 47opeq12d 4833 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(𝐹𝑋), (𝐹𝑌)⟩)
4937fveq2d 6826 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝐹𝑧) = (𝐹𝑍))
5048, 49oveq12d 7364 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧)) = (⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍)))
5139, 37oveq12d 7364 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝑦𝐺𝑧) = (𝑌𝐺𝑍))
5251, 42fveq12d 6829 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ((𝑦𝐺𝑧)‘𝑛) = ((𝑌𝐺𝑍)‘𝑁))
5336, 39oveq12d 7364 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌))
5453, 43fveq12d 6829 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ((𝑥𝐺𝑦)‘𝑚) = ((𝑋𝐺𝑌)‘𝑀))
5550, 52, 54oveq123d 7367 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀)))
5645, 55eqeq12d 2747 . . . . . . . 8 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) ↔ ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
5735, 56rspcdv 3569 . . . . . . 7 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → (∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
5829, 57rspcimdv 3567 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
5923, 58rspcimdv 3567 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
6021, 59rspcimdv 3567 . . . 4 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
6160adantld 490 . . 3 ((𝜑𝑥 = 𝑋) → ((((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
6219, 61rspcimdv 3567 . 2 (𝜑 → (∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
6318, 62mpd 15 1 (𝜑 → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cop 4582   class class class wbr 5091   × cxp 5614  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  m cmap 8750  Xcixp 8821  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571   Func cfunc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-ixp 8822  df-func 17765
This theorem is referenced by:  funcsect  17779  funcoppc  17782  cofucl  17795  funcres  17803  fthsect  17834  fthmon  17836  catcisolem  18017  prfcl  18109  evlfcllem  18127  curf1cl  18134  curf2cl  18137  curfcl  18138  uncfcurf  18145  yonedalem4c  18183  imaf1co  49193  fthcomf  49195  upciclem2  49205  uptrlem1  49248  fuco22natlem1  49380  fucocolem3  49393
  Copyright terms: Public domain W3C validator