MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcco Structured version   Visualization version   GIF version

Theorem funcco 17833
Description: A functor maps composition in the source category to composition in the target. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcco.b 𝐵 = (Base‘𝐷)
funcco.h 𝐻 = (Hom ‘𝐷)
funcco.o · = (comp‘𝐷)
funcco.O 𝑂 = (comp‘𝐸)
funcco.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
funcco.x (𝜑𝑋𝐵)
funcco.y (𝜑𝑌𝐵)
funcco.z (𝜑𝑍𝐵)
funcco.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
funcco.n (𝜑𝑁 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
funcco (𝜑 → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀)))

Proof of Theorem funcco
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcco.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2 funcco.b . . . . 5 𝐵 = (Base‘𝐷)
3 eqid 2729 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
4 funcco.h . . . . 5 𝐻 = (Hom ‘𝐷)
5 eqid 2729 . . . . 5 (Hom ‘𝐸) = (Hom ‘𝐸)
6 eqid 2729 . . . . 5 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2729 . . . . 5 (Id‘𝐸) = (Id‘𝐸)
8 funcco.o . . . . 5 · = (comp‘𝐷)
9 funcco.O . . . . 5 𝑂 = (comp‘𝐸)
10 df-br 5108 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
111, 10sylib 218 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
12 funcrcl 17825 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1311, 12syl 17 . . . . . 6 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1413simpld 494 . . . . 5 (𝜑𝐷 ∈ Cat)
1513simprd 495 . . . . 5 (𝜑𝐸 ∈ Cat)
162, 3, 4, 5, 6, 7, 8, 9, 14, 15isfunc 17826 . . . 4 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
171, 16mpbid 232 . . 3 (𝜑 → (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))))
1817simp3d 1144 . 2 (𝜑 → ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
19 funcco.x . . 3 (𝜑𝑋𝐵)
20 funcco.y . . . . . 6 (𝜑𝑌𝐵)
2120adantr 480 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
22 funcco.z . . . . . . 7 (𝜑𝑍𝐵)
2322ad2antrr 726 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑍𝐵)
24 funcco.m . . . . . . . . 9 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
2524ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑀 ∈ (𝑋𝐻𝑌))
26 simpllr 775 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑥 = 𝑋)
27 simplr 768 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌)
2826, 27oveq12d 7405 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
2925, 28eleqtrrd 2831 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑀 ∈ (𝑥𝐻𝑦))
30 funcco.n . . . . . . . . . 10 (𝜑𝑁 ∈ (𝑌𝐻𝑍))
3130ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → 𝑁 ∈ (𝑌𝐻𝑍))
32 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → 𝑦 = 𝑌)
33 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → 𝑧 = 𝑍)
3432, 33oveq12d 7405 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → (𝑦𝐻𝑧) = (𝑌𝐻𝑍))
3531, 34eleqtrrd 2831 . . . . . . . 8 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → 𝑁 ∈ (𝑦𝐻𝑧))
36 simp-5r 785 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑥 = 𝑋)
37 simpllr 775 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑧 = 𝑍)
3836, 37oveq12d 7405 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝑥𝐺𝑧) = (𝑋𝐺𝑍))
39 simp-4r 783 . . . . . . . . . . . . 13 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑦 = 𝑌)
4036, 39opeq12d 4845 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
4140, 37oveq12d 7405 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑋, 𝑌· 𝑍))
42 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁)
43 simplr 768 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑚 = 𝑀)
4441, 42, 43oveq123d 7408 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝑛(⟨𝑥, 𝑦· 𝑧)𝑚) = (𝑁(⟨𝑋, 𝑌· 𝑍)𝑀))
4538, 44fveq12d 6865 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)))
4636fveq2d 6862 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝐹𝑥) = (𝐹𝑋))
4739fveq2d 6862 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝐹𝑦) = (𝐹𝑌))
4846, 47opeq12d 4845 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(𝐹𝑋), (𝐹𝑌)⟩)
4937fveq2d 6862 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝐹𝑧) = (𝐹𝑍))
5048, 49oveq12d 7405 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧)) = (⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍)))
5139, 37oveq12d 7405 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝑦𝐺𝑧) = (𝑌𝐺𝑍))
5251, 42fveq12d 6865 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ((𝑦𝐺𝑧)‘𝑛) = ((𝑌𝐺𝑍)‘𝑁))
5336, 39oveq12d 7405 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌))
5453, 43fveq12d 6865 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ((𝑥𝐺𝑦)‘𝑚) = ((𝑋𝐺𝑌)‘𝑀))
5550, 52, 54oveq123d 7408 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀)))
5645, 55eqeq12d 2745 . . . . . . . 8 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) ↔ ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
5735, 56rspcdv 3580 . . . . . . 7 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → (∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
5829, 57rspcimdv 3578 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
5923, 58rspcimdv 3578 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
6021, 59rspcimdv 3578 . . . 4 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
6160adantld 490 . . 3 ((𝜑𝑥 = 𝑋) → ((((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
6219, 61rspcimdv 3578 . 2 (𝜑 → (∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
6318, 62mpd 15 1 (𝜑 → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cop 4595   class class class wbr 5107   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  m cmap 8799  Xcixp 8870  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626   Func cfunc 17816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ixp 8871  df-func 17820
This theorem is referenced by:  funcsect  17834  funcoppc  17837  cofucl  17850  funcres  17858  fthsect  17889  fthmon  17891  catcisolem  18072  prfcl  18164  evlfcllem  18182  curf1cl  18189  curf2cl  18192  curfcl  18193  uncfcurf  18200  yonedalem4c  18238  imaf1co  49144  fthcomf  49146  upciclem2  49156  uptrlem1  49199  fuco22natlem1  49331  fucocolem3  49344
  Copyright terms: Public domain W3C validator