MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcco Structured version   Visualization version   GIF version

Theorem funcco 16927
Description: A functor maps composition in the source category to composition in the target. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcco.b 𝐵 = (Base‘𝐷)
funcco.h 𝐻 = (Hom ‘𝐷)
funcco.o · = (comp‘𝐷)
funcco.O 𝑂 = (comp‘𝐸)
funcco.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
funcco.x (𝜑𝑋𝐵)
funcco.y (𝜑𝑌𝐵)
funcco.z (𝜑𝑍𝐵)
funcco.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
funcco.n (𝜑𝑁 ∈ (𝑌𝐻𝑍))
Assertion
Ref Expression
funcco (𝜑 → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀)))

Proof of Theorem funcco
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcco.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2 funcco.b . . . . 5 𝐵 = (Base‘𝐷)
3 eqid 2778 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
4 funcco.h . . . . 5 𝐻 = (Hom ‘𝐷)
5 eqid 2778 . . . . 5 (Hom ‘𝐸) = (Hom ‘𝐸)
6 eqid 2778 . . . . 5 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2778 . . . . 5 (Id‘𝐸) = (Id‘𝐸)
8 funcco.o . . . . 5 · = (comp‘𝐷)
9 funcco.O . . . . 5 𝑂 = (comp‘𝐸)
10 df-br 4889 . . . . . . . 8 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
111, 10sylib 210 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
12 funcrcl 16919 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1311, 12syl 17 . . . . . 6 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1413simpld 490 . . . . 5 (𝜑𝐷 ∈ Cat)
1513simprd 491 . . . . 5 (𝜑𝐸 ∈ Cat)
162, 3, 4, 5, 6, 7, 8, 9, 14, 15isfunc 16920 . . . 4 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
171, 16mpbid 224 . . 3 (𝜑 → (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))))
1817simp3d 1135 . 2 (𝜑 → ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
19 funcco.x . . 3 (𝜑𝑋𝐵)
20 funcco.y . . . . . 6 (𝜑𝑌𝐵)
2120adantr 474 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
22 funcco.z . . . . . . 7 (𝜑𝑍𝐵)
2322ad2antrr 716 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑍𝐵)
24 funcco.m . . . . . . . . 9 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
2524ad3antrrr 720 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑀 ∈ (𝑋𝐻𝑌))
26 simpllr 766 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑥 = 𝑋)
27 simplr 759 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌)
2826, 27oveq12d 6942 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
2925, 28eleqtrrd 2862 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑀 ∈ (𝑥𝐻𝑦))
30 funcco.n . . . . . . . . . 10 (𝜑𝑁 ∈ (𝑌𝐻𝑍))
3130ad4antr 722 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → 𝑁 ∈ (𝑌𝐻𝑍))
32 simpllr 766 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → 𝑦 = 𝑌)
33 simplr 759 . . . . . . . . . 10 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → 𝑧 = 𝑍)
3432, 33oveq12d 6942 . . . . . . . . 9 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → (𝑦𝐻𝑧) = (𝑌𝐻𝑍))
3531, 34eleqtrrd 2862 . . . . . . . 8 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → 𝑁 ∈ (𝑦𝐻𝑧))
36 simp-5r 776 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑥 = 𝑋)
37 simpllr 766 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑧 = 𝑍)
3836, 37oveq12d 6942 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝑥𝐺𝑧) = (𝑋𝐺𝑍))
39 simp-4r 774 . . . . . . . . . . . . 13 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑦 = 𝑌)
4036, 39opeq12d 4646 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
4140, 37oveq12d 6942 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑋, 𝑌· 𝑍))
42 simpr 479 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁)
43 simplr 759 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → 𝑚 = 𝑀)
4441, 42, 43oveq123d 6945 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝑛(⟨𝑥, 𝑦· 𝑧)𝑚) = (𝑁(⟨𝑋, 𝑌· 𝑍)𝑀))
4538, 44fveq12d 6455 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)))
4636fveq2d 6452 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝐹𝑥) = (𝐹𝑋))
4739fveq2d 6452 . . . . . . . . . . . 12 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝐹𝑦) = (𝐹𝑌))
4846, 47opeq12d 4646 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(𝐹𝑋), (𝐹𝑌)⟩)
4937fveq2d 6452 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝐹𝑧) = (𝐹𝑍))
5048, 49oveq12d 6942 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧)) = (⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍)))
5139, 37oveq12d 6942 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝑦𝐺𝑧) = (𝑌𝐺𝑍))
5251, 42fveq12d 6455 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ((𝑦𝐺𝑧)‘𝑛) = ((𝑌𝐺𝑍)‘𝑁))
5336, 39oveq12d 6942 . . . . . . . . . . 11 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌))
5453, 43fveq12d 6455 . . . . . . . . . 10 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → ((𝑥𝐺𝑦)‘𝑚) = ((𝑋𝐺𝑌)‘𝑀))
5550, 52, 54oveq123d 6945 . . . . . . . . 9 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀)))
5645, 55eqeq12d 2793 . . . . . . . 8 ((((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) ∧ 𝑛 = 𝑁) → (((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) ↔ ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
5735, 56rspcdv 3514 . . . . . . 7 (((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) ∧ 𝑚 = 𝑀) → (∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
5829, 57rspcimdv 3512 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (∀𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
5923, 58rspcimdv 3512 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
6021, 59rspcimdv 3512 . . . 4 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
6160adantld 486 . . 3 ((𝜑𝑥 = 𝑋) → ((((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
6219, 61rspcimdv 3512 . 2 (𝜑 → (∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦· 𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩𝑂(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))) → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀))))
6318, 62mpd 15 1 (𝜑 → ((𝑋𝐺𝑍)‘(𝑁(⟨𝑋, 𝑌· 𝑍)𝑀)) = (((𝑌𝐺𝑍)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  cop 4404   class class class wbr 4888   × cxp 5355  wf 6133  cfv 6137  (class class class)co 6924  1st c1st 7445  2nd c2nd 7446  𝑚 cmap 8142  Xcixp 8196  Basecbs 16266  Hom chom 16360  compcco 16361  Catccat 16721  Idccid 16722   Func cfunc 16910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-map 8144  df-ixp 8197  df-func 16914
This theorem is referenced by:  funcsect  16928  funcoppc  16931  cofucl  16944  funcres  16952  fthsect  16981  fthmon  16983  catcisolem  17152  prfcl  17240  evlfcllem  17258  curf1cl  17265  curf2cl  17268  curfcl  17269  uncfcurf  17276  yonedalem4c  17314
  Copyright terms: Public domain W3C validator