MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd2lsw Structured version   Visualization version   GIF version

Theorem swrd2lsw 14963
Description: Extract the last two symbols from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
swrd2lsw ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)

Proof of Theorem swrd2lsw
StepHypRef Expression
1 simpl 481 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → 𝑊 ∈ Word 𝑉)
2 lencl 14543 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
3 1z 12646 . . . . . . . . 9 1 ∈ ℤ
4 nn0z 12637 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
5 zltp1le 12666 . . . . . . . . 9 ((1 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
63, 4, 5sylancr 585 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
7 1p1e2 12391 . . . . . . . . . . 11 (1 + 1) = 2
87a1i 11 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (1 + 1) = 2)
98breq1d 5165 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) ↔ 2 ≤ (♯‘𝑊)))
109biimpd 228 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
116, 10sylbid 239 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
1211imp 405 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
13 2nn0 12543 . . . . . . . . 9 2 ∈ ℕ0
1413jctl 522 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
1514adantr 479 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
16 nn0sub 12576 . . . . . . 7 ((2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1715, 16syl 17 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1812, 17mpbid 231 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
192, 18sylan 578 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
20 0red 11269 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → 0 ∈ ℝ)
21 1red 11267 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → 1 ∈ ℝ)
22 zre 12616 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ℝ)
2320, 21, 223jca 1125 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
24 0lt1 11788 . . . . . . . . . . 11 0 < 1
25 lttr 11342 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 < 1 ∧ 1 < (♯‘𝑊)) → 0 < (♯‘𝑊)))
2625expd 414 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (0 < 1 → (1 < (♯‘𝑊) → 0 < (♯‘𝑊))))
2723, 24, 26mpisyl 21 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℤ → (1 < (♯‘𝑊) → 0 < (♯‘𝑊)))
28 elnnz 12622 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)))
2928simplbi2 499 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℤ → (0 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
3027, 29syld 47 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → (1 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
314, 30syl 17 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
3231imp 405 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
33 fzo0end 13780 . . . . . . 7 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
3432, 33syl 17 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
35 nn0cn 12536 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
36 2cn 12341 . . . . . . . . . . . 12 2 ∈ ℂ
3736a1i 11 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → 2 ∈ ℂ)
38 1cnd 11261 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → 1 ∈ ℂ)
3935, 37, 383jca 1125 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ))
40 1e2m1 12393 . . . . . . . . . . . . 13 1 = (2 − 1)
4140a1i 11 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → 1 = (2 − 1))
4241oveq2d 7442 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − 1) = ((♯‘𝑊) − (2 − 1)))
43 subsub 11542 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − (2 − 1)) = (((♯‘𝑊) − 2) + 1))
4442, 43eqtrd 2766 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
4539, 44syl 17 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
4645eqcomd 2732 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
4746eleq1d 2811 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → ((((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)) ↔ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
4847adantr 479 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)) ↔ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
4934, 48mpbird 256 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)))
502, 49sylan 578 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)))
511, 19, 503jca 1125 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ ℕ0 ∧ (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊))))
52 swrds2 14951 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ ℕ0 ∧ (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
5351, 52syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
5435, 36jctir 519 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ))
55 npcan 11521 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ) → (((♯‘𝑊) − 2) + 2) = (♯‘𝑊))
5655eqcomd 2732 . . . . . 6 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ) → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
572, 54, 563syl 18 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
5857adantr 479 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
5958opeq2d 4888 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩ = ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩)
6059oveq2d 7442 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩))
61 eqidd 2727 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊‘((♯‘𝑊) − 2)) = (𝑊‘((♯‘𝑊) − 2)))
62 lsw 14574 . . . . 5 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6339, 43syl 17 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − (2 − 1)) = (((♯‘𝑊) − 2) + 1))
6463eqcomd 2732 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − (2 − 1)))
65 2m1e1 12392 . . . . . . . . . . 11 (2 − 1) = 1
6665a1i 11 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (2 − 1) = 1)
6766oveq2d 7442 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − (2 − 1)) = ((♯‘𝑊) − 1))
6864, 67eqtrd 2766 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
692, 68syl 17 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
7069eqcomd 2732 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
7170fveq2d 6907 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7262, 71eqtrd 2766 . . . 4 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7372adantr 479 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (lastS‘𝑊) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7461, 73s2eqd 14874 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
7553, 60, 743eqtr4d 2776 1 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  cop 4639   class class class wbr 5155  cfv 6556  (class class class)co 7426  cc 11158  cr 11159  0cc0 11160  1c1 11161   + caddc 11163   < clt 11300  cle 11301  cmin 11496  cn 12266  2c2 12321  0cn0 12526  cz 12612  ..^cfzo 13683  chash 14349  Word cword 14524  lastSclsw 14572   substr csubstr 14650  ⟨“cs2 14852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-n0 12527  df-z 12613  df-uz 12877  df-fz 13541  df-fzo 13684  df-hash 14350  df-word 14525  df-lsw 14573  df-concat 14581  df-s1 14606  df-substr 14651  df-s2 14859
This theorem is referenced by:  2swrd2eqwrdeq  14964
  Copyright terms: Public domain W3C validator