MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd2lsw Structured version   Visualization version   GIF version

Theorem swrd2lsw 14302
Description: Extract the last two symbols from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
swrd2lsw ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)

Proof of Theorem swrd2lsw
StepHypRef Expression
1 simpl 483 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → 𝑊 ∈ Word 𝑉)
2 lencl 13871 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
3 1z 12000 . . . . . . . . 9 1 ∈ ℤ
4 nn0z 11993 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
5 zltp1le 12020 . . . . . . . . 9 ((1 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
63, 4, 5sylancr 587 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
7 1p1e2 11750 . . . . . . . . . . 11 (1 + 1) = 2
87a1i 11 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (1 + 1) = 2)
98breq1d 5067 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) ↔ 2 ≤ (♯‘𝑊)))
109biimpd 230 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
116, 10sylbid 241 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
1211imp 407 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
13 2nn0 11902 . . . . . . . . 9 2 ∈ ℕ0
1413jctl 524 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
1514adantr 481 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
16 nn0sub 11935 . . . . . . 7 ((2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1715, 16syl 17 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1812, 17mpbid 233 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
192, 18sylan 580 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
20 0red 10632 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → 0 ∈ ℝ)
21 1red 10630 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → 1 ∈ ℝ)
22 zre 11973 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ℝ)
2320, 21, 223jca 1120 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
24 0lt1 11150 . . . . . . . . . . 11 0 < 1
25 lttr 10705 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 < 1 ∧ 1 < (♯‘𝑊)) → 0 < (♯‘𝑊)))
2625expd 416 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (0 < 1 → (1 < (♯‘𝑊) → 0 < (♯‘𝑊))))
2723, 24, 26mpisyl 21 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℤ → (1 < (♯‘𝑊) → 0 < (♯‘𝑊)))
28 elnnz 11979 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)))
2928simplbi2 501 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℤ → (0 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
3027, 29syld 47 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → (1 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
314, 30syl 17 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
3231imp 407 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
33 fzo0end 13117 . . . . . . 7 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
3432, 33syl 17 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
35 nn0cn 11895 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
36 2cn 11700 . . . . . . . . . . . 12 2 ∈ ℂ
3736a1i 11 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → 2 ∈ ℂ)
38 1cnd 10624 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → 1 ∈ ℂ)
3935, 37, 383jca 1120 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ))
40 1e2m1 11752 . . . . . . . . . . . . 13 1 = (2 − 1)
4140a1i 11 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → 1 = (2 − 1))
4241oveq2d 7161 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − 1) = ((♯‘𝑊) − (2 − 1)))
43 subsub 10904 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − (2 − 1)) = (((♯‘𝑊) − 2) + 1))
4442, 43eqtrd 2853 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
4539, 44syl 17 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
4645eqcomd 2824 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
4746eleq1d 2894 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → ((((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)) ↔ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
4847adantr 481 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)) ↔ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
4934, 48mpbird 258 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)))
502, 49sylan 580 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)))
511, 19, 503jca 1120 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ ℕ0 ∧ (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊))))
52 swrds2 14290 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ ℕ0 ∧ (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
5351, 52syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
5435, 36jctir 521 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ))
55 npcan 10883 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ) → (((♯‘𝑊) − 2) + 2) = (♯‘𝑊))
5655eqcomd 2824 . . . . . 6 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ) → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
572, 54, 563syl 18 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
5857adantr 481 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
5958opeq2d 4802 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩ = ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩)
6059oveq2d 7161 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩))
61 eqidd 2819 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊‘((♯‘𝑊) − 2)) = (𝑊‘((♯‘𝑊) − 2)))
62 lsw 13904 . . . . 5 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6339, 43syl 17 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − (2 − 1)) = (((♯‘𝑊) − 2) + 1))
6463eqcomd 2824 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − (2 − 1)))
65 2m1e1 11751 . . . . . . . . . . 11 (2 − 1) = 1
6665a1i 11 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (2 − 1) = 1)
6766oveq2d 7161 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − (2 − 1)) = ((♯‘𝑊) − 1))
6864, 67eqtrd 2853 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
692, 68syl 17 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
7069eqcomd 2824 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
7170fveq2d 6667 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7262, 71eqtrd 2853 . . . 4 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7372adantr 481 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (lastS‘𝑊) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7461, 73s2eqd 14213 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
7553, 60, 743eqtr4d 2863 1 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  cop 4563   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   < clt 10663  cle 10664  cmin 10858  cn 11626  2c2 11680  0cn0 11885  cz 11969  ..^cfzo 13021  chash 13678  Word cword 13849  lastSclsw 13902   substr csubstr 13990  ⟨“cs2 14191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-lsw 13903  df-concat 13911  df-s1 13938  df-substr 13991  df-s2 14198
This theorem is referenced by:  2swrd2eqwrdeq  14303
  Copyright terms: Public domain W3C validator