MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd2lsw Structured version   Visualization version   GIF version

Theorem swrd2lsw 14894
Description: Extract the last two symbols from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
swrd2lsw ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)

Proof of Theorem swrd2lsw
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → 𝑊 ∈ Word 𝑉)
2 lencl 14474 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
3 1z 12539 . . . . . . . . 9 1 ∈ ℤ
4 nn0z 12530 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
5 zltp1le 12559 . . . . . . . . 9 ((1 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
63, 4, 5sylancr 587 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
7 1p1e2 12282 . . . . . . . . . . 11 (1 + 1) = 2
87a1i 11 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (1 + 1) = 2)
98breq1d 5112 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) ↔ 2 ≤ (♯‘𝑊)))
109biimpd 229 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
116, 10sylbid 240 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
1211imp 406 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
13 2nn0 12435 . . . . . . . . 9 2 ∈ ℕ0
1413jctl 523 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
1514adantr 480 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
16 nn0sub 12468 . . . . . . 7 ((2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1715, 16syl 17 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1812, 17mpbid 232 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
192, 18sylan 580 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
20 0red 11153 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → 0 ∈ ℝ)
21 1red 11151 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → 1 ∈ ℝ)
22 zre 12509 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ℝ)
2320, 21, 223jca 1128 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
24 0lt1 11676 . . . . . . . . . . 11 0 < 1
25 lttr 11226 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 < 1 ∧ 1 < (♯‘𝑊)) → 0 < (♯‘𝑊)))
2625expd 415 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (0 < 1 → (1 < (♯‘𝑊) → 0 < (♯‘𝑊))))
2723, 24, 26mpisyl 21 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℤ → (1 < (♯‘𝑊) → 0 < (♯‘𝑊)))
28 elnnz 12515 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)))
2928simplbi2 500 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℤ → (0 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
3027, 29syld 47 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → (1 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
314, 30syl 17 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
3231imp 406 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
33 fzo0end 13695 . . . . . . 7 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
3432, 33syl 17 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
35 nn0cn 12428 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
36 2cn 12237 . . . . . . . . . . . 12 2 ∈ ℂ
3736a1i 11 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → 2 ∈ ℂ)
38 1cnd 11145 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → 1 ∈ ℂ)
3935, 37, 383jca 1128 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ))
40 1e2m1 12284 . . . . . . . . . . . . 13 1 = (2 − 1)
4140a1i 11 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → 1 = (2 − 1))
4241oveq2d 7385 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − 1) = ((♯‘𝑊) − (2 − 1)))
43 subsub 11428 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − (2 − 1)) = (((♯‘𝑊) − 2) + 1))
4442, 43eqtrd 2764 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
4539, 44syl 17 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
4645eqcomd 2735 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
4746eleq1d 2813 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → ((((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)) ↔ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
4847adantr 480 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)) ↔ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
4934, 48mpbird 257 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)))
502, 49sylan 580 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)))
511, 19, 503jca 1128 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ ℕ0 ∧ (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊))))
52 swrds2 14882 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ ℕ0 ∧ (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
5351, 52syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
5435, 36jctir 520 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ))
55 npcan 11406 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ) → (((♯‘𝑊) − 2) + 2) = (♯‘𝑊))
5655eqcomd 2735 . . . . . 6 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ) → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
572, 54, 563syl 18 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
5857adantr 480 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
5958opeq2d 4840 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩ = ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩)
6059oveq2d 7385 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩))
61 eqidd 2730 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊‘((♯‘𝑊) − 2)) = (𝑊‘((♯‘𝑊) − 2)))
62 lsw 14505 . . . . 5 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6339, 43syl 17 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − (2 − 1)) = (((♯‘𝑊) − 2) + 1))
6463eqcomd 2735 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − (2 − 1)))
65 2m1e1 12283 . . . . . . . . . . 11 (2 − 1) = 1
6665a1i 11 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (2 − 1) = 1)
6766oveq2d 7385 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − (2 − 1)) = ((♯‘𝑊) − 1))
6864, 67eqtrd 2764 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
692, 68syl 17 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
7069eqcomd 2735 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
7170fveq2d 6844 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7262, 71eqtrd 2764 . . . 4 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7372adantr 480 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (lastS‘𝑊) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7461, 73s2eqd 14805 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
7553, 60, 743eqtr4d 2774 1 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381  cn 12162  2c2 12217  0cn0 12418  cz 12505  ..^cfzo 13591  chash 14271  Word cword 14454  lastSclsw 14503   substr csubstr 14581  ⟨“cs2 14783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-s2 14790
This theorem is referenced by:  2swrd2eqwrdeq  14895
  Copyright terms: Public domain W3C validator