MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd2lsw Structured version   Visualization version   GIF version

Theorem swrd2lsw 14593
Description: Extract the last two symbols from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
swrd2lsw ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)

Proof of Theorem swrd2lsw
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → 𝑊 ∈ Word 𝑉)
2 lencl 14164 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
3 1z 12280 . . . . . . . . 9 1 ∈ ℤ
4 nn0z 12273 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
5 zltp1le 12300 . . . . . . . . 9 ((1 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
63, 4, 5sylancr 586 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
7 1p1e2 12028 . . . . . . . . . . 11 (1 + 1) = 2
87a1i 11 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (1 + 1) = 2)
98breq1d 5080 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) ↔ 2 ≤ (♯‘𝑊)))
109biimpd 228 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
116, 10sylbid 239 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
1211imp 406 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
13 2nn0 12180 . . . . . . . . 9 2 ∈ ℕ0
1413jctl 523 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
1514adantr 480 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
16 nn0sub 12213 . . . . . . 7 ((2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1715, 16syl 17 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1812, 17mpbid 231 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
192, 18sylan 579 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
20 0red 10909 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → 0 ∈ ℝ)
21 1red 10907 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → 1 ∈ ℝ)
22 zre 12253 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ℝ)
2320, 21, 223jca 1126 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
24 0lt1 11427 . . . . . . . . . . 11 0 < 1
25 lttr 10982 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 < 1 ∧ 1 < (♯‘𝑊)) → 0 < (♯‘𝑊)))
2625expd 415 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (0 < 1 → (1 < (♯‘𝑊) → 0 < (♯‘𝑊))))
2723, 24, 26mpisyl 21 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℤ → (1 < (♯‘𝑊) → 0 < (♯‘𝑊)))
28 elnnz 12259 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)))
2928simplbi2 500 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℤ → (0 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
3027, 29syld 47 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → (1 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
314, 30syl 17 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → (♯‘𝑊) ∈ ℕ))
3231imp 406 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
33 fzo0end 13407 . . . . . . 7 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
3432, 33syl 17 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
35 nn0cn 12173 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
36 2cn 11978 . . . . . . . . . . . 12 2 ∈ ℂ
3736a1i 11 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → 2 ∈ ℂ)
38 1cnd 10901 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → 1 ∈ ℂ)
3935, 37, 383jca 1126 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ))
40 1e2m1 12030 . . . . . . . . . . . . 13 1 = (2 − 1)
4140a1i 11 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → 1 = (2 − 1))
4241oveq2d 7271 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − 1) = ((♯‘𝑊) − (2 − 1)))
43 subsub 11181 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − (2 − 1)) = (((♯‘𝑊) − 2) + 1))
4442, 43eqtrd 2778 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
4539, 44syl 17 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
4645eqcomd 2744 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
4746eleq1d 2823 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → ((((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)) ↔ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
4847adantr 480 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)) ↔ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
4934, 48mpbird 256 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)))
502, 49sylan 579 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊)))
511, 19, 503jca 1126 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ ℕ0 ∧ (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊))))
52 swrds2 14581 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ ℕ0 ∧ (((♯‘𝑊) − 2) + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
5351, 52syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
5435, 36jctir 520 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ))
55 npcan 11160 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ) → (((♯‘𝑊) − 2) + 2) = (♯‘𝑊))
5655eqcomd 2744 . . . . . 6 (((♯‘𝑊) ∈ ℂ ∧ 2 ∈ ℂ) → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
572, 54, 563syl 18 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
5857adantr 480 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) = (((♯‘𝑊) − 2) + 2))
5958opeq2d 4808 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩ = ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩)
6059oveq2d 7271 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑊 substr ⟨((♯‘𝑊) − 2), (((♯‘𝑊) − 2) + 2)⟩))
61 eqidd 2739 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊‘((♯‘𝑊) − 2)) = (𝑊‘((♯‘𝑊) − 2)))
62 lsw 14195 . . . . 5 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
6339, 43syl 17 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − (2 − 1)) = (((♯‘𝑊) − 2) + 1))
6463eqcomd 2744 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − (2 − 1)))
65 2m1e1 12029 . . . . . . . . . . 11 (2 − 1) = 1
6665a1i 11 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (2 − 1) = 1)
6766oveq2d 7271 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − (2 − 1)) = ((♯‘𝑊) − 1))
6864, 67eqtrd 2778 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
692, 68syl 17 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (((♯‘𝑊) − 2) + 1) = ((♯‘𝑊) − 1))
7069eqcomd 2744 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) − 1) = (((♯‘𝑊) − 2) + 1))
7170fveq2d 6760 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7262, 71eqtrd 2778 . . . 4 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7372adantr 480 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (lastS‘𝑊) = (𝑊‘(((♯‘𝑊) − 2) + 1)))
7461, 73s2eqd 14504 . 2 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑊‘((♯‘𝑊) − 2))(𝑊‘(((♯‘𝑊) − 2) + 1))”⟩)
7553, 60, 743eqtr4d 2788 1 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  ..^cfzo 13311  chash 13972  Word cword 14145  lastSclsw 14193   substr csubstr 14281  ⟨“cs2 14482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-s2 14489
This theorem is referenced by:  2swrd2eqwrdeq  14594
  Copyright terms: Public domain W3C validator