Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wrdl2exs2 | Structured version Visualization version GIF version |
Description: A word of length two is a doubleton word. (Contributed by AV, 25-Jan-2021.) |
Ref | Expression |
---|---|
wrdl2exs2 | ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → ∃𝑠 ∈ 𝑆 ∃𝑡 ∈ 𝑆 𝑊 = 〈“𝑠𝑡”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1le2 12112 | . . . 4 ⊢ 1 ≤ 2 | |
2 | breq2 5074 | . . . 4 ⊢ ((♯‘𝑊) = 2 → (1 ≤ (♯‘𝑊) ↔ 1 ≤ 2)) | |
3 | 1, 2 | mpbiri 257 | . . 3 ⊢ ((♯‘𝑊) = 2 → 1 ≤ (♯‘𝑊)) |
4 | wrdsymb1 14184 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝑊)) → (𝑊‘0) ∈ 𝑆) | |
5 | 3, 4 | sylan2 592 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → (𝑊‘0) ∈ 𝑆) |
6 | lsw 14195 | . . . 4 ⊢ (𝑊 ∈ Word 𝑆 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) | |
7 | oveq1 7262 | . . . . . 6 ⊢ ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = (2 − 1)) | |
8 | 2m1e1 12029 | . . . . . 6 ⊢ (2 − 1) = 1 | |
9 | 7, 8 | eqtrdi 2795 | . . . . 5 ⊢ ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = 1) |
10 | 9 | fveq2d 6760 | . . . 4 ⊢ ((♯‘𝑊) = 2 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘1)) |
11 | 6, 10 | sylan9eq 2799 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → (lastS‘𝑊) = (𝑊‘1)) |
12 | 2nn 11976 | . . . 4 ⊢ 2 ∈ ℕ | |
13 | lswlgt0cl 14200 | . . . 4 ⊢ ((2 ∈ ℕ ∧ (𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2)) → (lastS‘𝑊) ∈ 𝑆) | |
14 | 12, 13 | mpan 686 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → (lastS‘𝑊) ∈ 𝑆) |
15 | 11, 14 | eqeltrrd 2840 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → (𝑊‘1) ∈ 𝑆) |
16 | wrdlen2s2 14586 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → 𝑊 = 〈“(𝑊‘0)(𝑊‘1)”〉) | |
17 | id 22 | . . . . 5 ⊢ (𝑠 = (𝑊‘0) → 𝑠 = (𝑊‘0)) | |
18 | eqidd 2739 | . . . . 5 ⊢ (𝑠 = (𝑊‘0) → 𝑡 = 𝑡) | |
19 | 17, 18 | s2eqd 14504 | . . . 4 ⊢ (𝑠 = (𝑊‘0) → 〈“𝑠𝑡”〉 = 〈“(𝑊‘0)𝑡”〉) |
20 | 19 | eqeq2d 2749 | . . 3 ⊢ (𝑠 = (𝑊‘0) → (𝑊 = 〈“𝑠𝑡”〉 ↔ 𝑊 = 〈“(𝑊‘0)𝑡”〉)) |
21 | eqidd 2739 | . . . . 5 ⊢ (𝑡 = (𝑊‘1) → (𝑊‘0) = (𝑊‘0)) | |
22 | id 22 | . . . . 5 ⊢ (𝑡 = (𝑊‘1) → 𝑡 = (𝑊‘1)) | |
23 | 21, 22 | s2eqd 14504 | . . . 4 ⊢ (𝑡 = (𝑊‘1) → 〈“(𝑊‘0)𝑡”〉 = 〈“(𝑊‘0)(𝑊‘1)”〉) |
24 | 23 | eqeq2d 2749 | . . 3 ⊢ (𝑡 = (𝑊‘1) → (𝑊 = 〈“(𝑊‘0)𝑡”〉 ↔ 𝑊 = 〈“(𝑊‘0)(𝑊‘1)”〉)) |
25 | 20, 24 | rspc2ev 3564 | . 2 ⊢ (((𝑊‘0) ∈ 𝑆 ∧ (𝑊‘1) ∈ 𝑆 ∧ 𝑊 = 〈“(𝑊‘0)(𝑊‘1)”〉) → ∃𝑠 ∈ 𝑆 ∃𝑡 ∈ 𝑆 𝑊 = 〈“𝑠𝑡”〉) |
26 | 5, 15, 16, 25 | syl3anc 1369 | 1 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → ∃𝑠 ∈ 𝑆 ∃𝑡 ∈ 𝑆 𝑊 = 〈“𝑠𝑡”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 ≤ cle 10941 − cmin 11135 ℕcn 11903 2c2 11958 ♯chash 13972 Word cword 14145 lastSclsw 14193 〈“cs2 14482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-s1 14229 df-s2 14489 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |