| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdl2exs2 | Structured version Visualization version GIF version | ||
| Description: A word of length two is a doubleton word. (Contributed by AV, 25-Jan-2021.) |
| Ref | Expression |
|---|---|
| wrdl2exs2 | ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → ∃𝑠 ∈ 𝑆 ∃𝑡 ∈ 𝑆 𝑊 = 〈“𝑠𝑡”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1le2 12449 | . . . 4 ⊢ 1 ≤ 2 | |
| 2 | breq2 5123 | . . . 4 ⊢ ((♯‘𝑊) = 2 → (1 ≤ (♯‘𝑊) ↔ 1 ≤ 2)) | |
| 3 | 1, 2 | mpbiri 258 | . . 3 ⊢ ((♯‘𝑊) = 2 → 1 ≤ (♯‘𝑊)) |
| 4 | wrdsymb1 14571 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝑊)) → (𝑊‘0) ∈ 𝑆) | |
| 5 | 3, 4 | sylan2 593 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → (𝑊‘0) ∈ 𝑆) |
| 6 | lsw 14582 | . . . 4 ⊢ (𝑊 ∈ Word 𝑆 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) | |
| 7 | oveq1 7412 | . . . . . 6 ⊢ ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = (2 − 1)) | |
| 8 | 2m1e1 12366 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 9 | 7, 8 | eqtrdi 2786 | . . . . 5 ⊢ ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = 1) |
| 10 | 9 | fveq2d 6880 | . . . 4 ⊢ ((♯‘𝑊) = 2 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘1)) |
| 11 | 6, 10 | sylan9eq 2790 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → (lastS‘𝑊) = (𝑊‘1)) |
| 12 | 2nn 12313 | . . . 4 ⊢ 2 ∈ ℕ | |
| 13 | lswlgt0cl 14587 | . . . 4 ⊢ ((2 ∈ ℕ ∧ (𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2)) → (lastS‘𝑊) ∈ 𝑆) | |
| 14 | 12, 13 | mpan 690 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → (lastS‘𝑊) ∈ 𝑆) |
| 15 | 11, 14 | eqeltrrd 2835 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → (𝑊‘1) ∈ 𝑆) |
| 16 | wrdlen2s2 14964 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → 𝑊 = 〈“(𝑊‘0)(𝑊‘1)”〉) | |
| 17 | id 22 | . . . . 5 ⊢ (𝑠 = (𝑊‘0) → 𝑠 = (𝑊‘0)) | |
| 18 | eqidd 2736 | . . . . 5 ⊢ (𝑠 = (𝑊‘0) → 𝑡 = 𝑡) | |
| 19 | 17, 18 | s2eqd 14882 | . . . 4 ⊢ (𝑠 = (𝑊‘0) → 〈“𝑠𝑡”〉 = 〈“(𝑊‘0)𝑡”〉) |
| 20 | 19 | eqeq2d 2746 | . . 3 ⊢ (𝑠 = (𝑊‘0) → (𝑊 = 〈“𝑠𝑡”〉 ↔ 𝑊 = 〈“(𝑊‘0)𝑡”〉)) |
| 21 | eqidd 2736 | . . . . 5 ⊢ (𝑡 = (𝑊‘1) → (𝑊‘0) = (𝑊‘0)) | |
| 22 | id 22 | . . . . 5 ⊢ (𝑡 = (𝑊‘1) → 𝑡 = (𝑊‘1)) | |
| 23 | 21, 22 | s2eqd 14882 | . . . 4 ⊢ (𝑡 = (𝑊‘1) → 〈“(𝑊‘0)𝑡”〉 = 〈“(𝑊‘0)(𝑊‘1)”〉) |
| 24 | 23 | eqeq2d 2746 | . . 3 ⊢ (𝑡 = (𝑊‘1) → (𝑊 = 〈“(𝑊‘0)𝑡”〉 ↔ 𝑊 = 〈“(𝑊‘0)(𝑊‘1)”〉)) |
| 25 | 20, 24 | rspc2ev 3614 | . 2 ⊢ (((𝑊‘0) ∈ 𝑆 ∧ (𝑊‘1) ∈ 𝑆 ∧ 𝑊 = 〈“(𝑊‘0)(𝑊‘1)”〉) → ∃𝑠 ∈ 𝑆 ∃𝑡 ∈ 𝑆 𝑊 = 〈“𝑠𝑡”〉) |
| 26 | 5, 15, 16, 25 | syl3anc 1373 | 1 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → ∃𝑠 ∈ 𝑆 ∃𝑡 ∈ 𝑆 𝑊 = 〈“𝑠𝑡”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 ≤ cle 11270 − cmin 11466 ℕcn 12240 2c2 12295 ♯chash 14348 Word cword 14531 lastSclsw 14580 〈“cs2 14860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-lsw 14581 df-concat 14589 df-s1 14614 df-s2 14867 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |