| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdl2exs2 | Structured version Visualization version GIF version | ||
| Description: A word of length two is a doubleton word. (Contributed by AV, 25-Jan-2021.) |
| Ref | Expression |
|---|---|
| wrdl2exs2 | ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → ∃𝑠 ∈ 𝑆 ∃𝑡 ∈ 𝑆 𝑊 = 〈“𝑠𝑡”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1le2 12336 | . . . 4 ⊢ 1 ≤ 2 | |
| 2 | breq2 5097 | . . . 4 ⊢ ((♯‘𝑊) = 2 → (1 ≤ (♯‘𝑊) ↔ 1 ≤ 2)) | |
| 3 | 1, 2 | mpbiri 258 | . . 3 ⊢ ((♯‘𝑊) = 2 → 1 ≤ (♯‘𝑊)) |
| 4 | wrdsymb1 14462 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝑊)) → (𝑊‘0) ∈ 𝑆) | |
| 5 | 3, 4 | sylan2 593 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → (𝑊‘0) ∈ 𝑆) |
| 6 | lsw 14473 | . . . 4 ⊢ (𝑊 ∈ Word 𝑆 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) | |
| 7 | oveq1 7359 | . . . . . 6 ⊢ ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = (2 − 1)) | |
| 8 | 2m1e1 12253 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 9 | 7, 8 | eqtrdi 2784 | . . . . 5 ⊢ ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = 1) |
| 10 | 9 | fveq2d 6832 | . . . 4 ⊢ ((♯‘𝑊) = 2 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘1)) |
| 11 | 6, 10 | sylan9eq 2788 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → (lastS‘𝑊) = (𝑊‘1)) |
| 12 | 2nn 12205 | . . . 4 ⊢ 2 ∈ ℕ | |
| 13 | lswlgt0cl 14478 | . . . 4 ⊢ ((2 ∈ ℕ ∧ (𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2)) → (lastS‘𝑊) ∈ 𝑆) | |
| 14 | 12, 13 | mpan 690 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → (lastS‘𝑊) ∈ 𝑆) |
| 15 | 11, 14 | eqeltrrd 2834 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → (𝑊‘1) ∈ 𝑆) |
| 16 | wrdlen2s2 14854 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → 𝑊 = 〈“(𝑊‘0)(𝑊‘1)”〉) | |
| 17 | id 22 | . . . . 5 ⊢ (𝑠 = (𝑊‘0) → 𝑠 = (𝑊‘0)) | |
| 18 | eqidd 2734 | . . . . 5 ⊢ (𝑠 = (𝑊‘0) → 𝑡 = 𝑡) | |
| 19 | 17, 18 | s2eqd 14772 | . . . 4 ⊢ (𝑠 = (𝑊‘0) → 〈“𝑠𝑡”〉 = 〈“(𝑊‘0)𝑡”〉) |
| 20 | 19 | eqeq2d 2744 | . . 3 ⊢ (𝑠 = (𝑊‘0) → (𝑊 = 〈“𝑠𝑡”〉 ↔ 𝑊 = 〈“(𝑊‘0)𝑡”〉)) |
| 21 | eqidd 2734 | . . . . 5 ⊢ (𝑡 = (𝑊‘1) → (𝑊‘0) = (𝑊‘0)) | |
| 22 | id 22 | . . . . 5 ⊢ (𝑡 = (𝑊‘1) → 𝑡 = (𝑊‘1)) | |
| 23 | 21, 22 | s2eqd 14772 | . . . 4 ⊢ (𝑡 = (𝑊‘1) → 〈“(𝑊‘0)𝑡”〉 = 〈“(𝑊‘0)(𝑊‘1)”〉) |
| 24 | 23 | eqeq2d 2744 | . . 3 ⊢ (𝑡 = (𝑊‘1) → (𝑊 = 〈“(𝑊‘0)𝑡”〉 ↔ 𝑊 = 〈“(𝑊‘0)(𝑊‘1)”〉)) |
| 25 | 20, 24 | rspc2ev 3586 | . 2 ⊢ (((𝑊‘0) ∈ 𝑆 ∧ (𝑊‘1) ∈ 𝑆 ∧ 𝑊 = 〈“(𝑊‘0)(𝑊‘1)”〉) → ∃𝑠 ∈ 𝑆 ∃𝑡 ∈ 𝑆 𝑊 = 〈“𝑠𝑡”〉) |
| 26 | 5, 15, 16, 25 | syl3anc 1373 | 1 ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 2) → ∃𝑠 ∈ 𝑆 ∃𝑡 ∈ 𝑆 𝑊 = 〈“𝑠𝑡”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 ≤ cle 11154 − cmin 11351 ℕcn 12132 2c2 12187 ♯chash 14239 Word cword 14422 lastSclsw 14471 〈“cs2 14750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-lsw 14472 df-concat 14480 df-s1 14506 df-s2 14757 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |