MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgval2 Structured version   Visualization version   GIF version

Theorem efgval2 19661
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efgval2 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟)}
Distinct variable groups:   𝑦,𝑟,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧,𝑟,𝑥   𝑛,𝑀   𝑣,𝑟,𝑤,𝑥,𝑀   𝑇,𝑟,𝑥   𝑛,𝑊,𝑟,𝑣,𝑤   𝑥,𝑦,𝑧,𝑊   ,𝑟,𝑥,𝑦,𝑧   𝑛,𝐼,𝑟,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efgval2
Dummy variables 𝑎 𝑏 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . 3 = ( ~FG𝐼)
31, 2efgval 19654 . 2 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
4 efgval2.m . . . . . . . . . . 11 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
5 efgval2.t . . . . . . . . . . 11 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
61, 2, 4, 5efgtf 19659 . . . . . . . . . 10 (𝑥𝑊 → ((𝑇𝑥) = (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ∧ (𝑇𝑥):((0...(♯‘𝑥)) × (𝐼 × 2o))⟶𝑊))
76simpld 494 . . . . . . . . 9 (𝑥𝑊 → (𝑇𝑥) = (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
87rneqd 5905 . . . . . . . 8 (𝑥𝑊 → ran (𝑇𝑥) = ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
98sseq1d 3981 . . . . . . 7 (𝑥𝑊 → (ran (𝑇𝑥) ⊆ [𝑥]𝑟 ↔ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ⊆ [𝑥]𝑟))
10 dfss3 3938 . . . . . . . 8 (ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ⊆ [𝑥]𝑟 ↔ ∀𝑎 ∈ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))𝑎 ∈ [𝑥]𝑟)
11 ovex 7423 . . . . . . . . . . 11 (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ∈ V
1211rgen2w 3050 . . . . . . . . . 10 𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ∈ V
13 eqid 2730 . . . . . . . . . . 11 (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) = (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))
14 vex 3454 . . . . . . . . . . . . 13 𝑎 ∈ V
15 vex 3454 . . . . . . . . . . . . 13 𝑥 ∈ V
1614, 15elec 8720 . . . . . . . . . . . 12 (𝑎 ∈ [𝑥]𝑟𝑥𝑟𝑎)
17 breq2 5114 . . . . . . . . . . . 12 (𝑎 = (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) → (𝑥𝑟𝑎𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
1816, 17bitrid 283 . . . . . . . . . . 11 (𝑎 = (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) → (𝑎 ∈ [𝑥]𝑟𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
1913, 18ralrnmpo 7531 . . . . . . . . . 10 (∀𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ∈ V → (∀𝑎 ∈ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))𝑎 ∈ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
2012, 19ax-mp 5 . . . . . . . . 9 (∀𝑎 ∈ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))𝑎 ∈ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))
21 id 22 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨𝑎, 𝑏⟩ → 𝑢 = ⟨𝑎, 𝑏⟩)
22 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑎, 𝑏⟩ → (𝑀𝑢) = (𝑀‘⟨𝑎, 𝑏⟩))
23 df-ov 7393 . . . . . . . . . . . . . . . . 17 (𝑎𝑀𝑏) = (𝑀‘⟨𝑎, 𝑏⟩)
2422, 23eqtr4di 2783 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨𝑎, 𝑏⟩ → (𝑀𝑢) = (𝑎𝑀𝑏))
2521, 24s2eqd 14836 . . . . . . . . . . . . . . 15 (𝑢 = ⟨𝑎, 𝑏⟩ → ⟨“𝑢(𝑀𝑢)”⟩ = ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩)
2625oteq3d 4854 . . . . . . . . . . . . . 14 (𝑢 = ⟨𝑎, 𝑏⟩ → ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩ = ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩)
2726oveq2d 7406 . . . . . . . . . . . . 13 (𝑢 = ⟨𝑎, 𝑏⟩ → (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) = (𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩))
2827breq2d 5122 . . . . . . . . . . . 12 (𝑢 = ⟨𝑎, 𝑏⟩ → (𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ↔ 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩)))
2928ralxp 5808 . . . . . . . . . . 11 (∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩))
30 eqidd 2731 . . . . . . . . . . . . . . . . 17 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑎, 𝑏⟩ = ⟨𝑎, 𝑏⟩)
314efgmval 19649 . . . . . . . . . . . . . . . . 17 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎𝑀𝑏) = ⟨𝑎, (1o𝑏)⟩)
3230, 31s2eqd 14836 . . . . . . . . . . . . . . . 16 ((𝑎𝐼𝑏 ∈ 2o) → ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩ = ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)
3332oteq3d 4854 . . . . . . . . . . . . . . 15 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩ = ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)
3433oveq2d 7406 . . . . . . . . . . . . . 14 ((𝑎𝐼𝑏 ∈ 2o) → (𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩) = (𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
3534breq2d 5122 . . . . . . . . . . . . 13 ((𝑎𝐼𝑏 ∈ 2o) → (𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩) ↔ 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
3635ralbidva 3155 . . . . . . . . . . . 12 (𝑎𝐼 → (∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩) ↔ ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
3736ralbiia 3074 . . . . . . . . . . 11 (∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
3829, 37bitri 275 . . . . . . . . . 10 (∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
3938ralbii 3076 . . . . . . . . 9 (∀𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
4020, 39bitri 275 . . . . . . . 8 (∀𝑎 ∈ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))𝑎 ∈ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
4110, 40bitri 275 . . . . . . 7 (ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ⊆ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
429, 41bitrdi 287 . . . . . 6 (𝑥𝑊 → (ran (𝑇𝑥) ⊆ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
4342ralbiia 3074 . . . . 5 (∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟 ↔ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
4443anbi2i 623 . . . 4 ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟) ↔ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
4544abbii 2797 . . 3 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟)} = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
4645inteqi 4917 . 2 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟)} = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
473, 46eqtr4i 2756 1 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  Vcvv 3450  cdif 3914  wss 3917  cop 4598  cotp 4600   cint 4913   class class class wbr 5110  cmpt 5191   I cid 5535   × cxp 5639  ran crn 5642  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1oc1o 8430  2oc2o 8431   Er wer 8671  [cec 8672  0cc0 11075  ...cfz 13475  chash 14302  Word cword 14485   splice csplice 14721  ⟨“cs2 14814   ~FG cefg 19643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-ec 8676  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-s2 14821  df-efg 19646
This theorem is referenced by:  efgi2  19662  efgrelexlemb  19687  efgcpbllemb  19692
  Copyright terms: Public domain W3C validator