MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgval2 Structured version   Visualization version   GIF version

Theorem efgval2 18842
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efgval2 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟)}
Distinct variable groups:   𝑦,𝑟,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧,𝑟,𝑥   𝑛,𝑀   𝑣,𝑟,𝑤,𝑥,𝑀   𝑇,𝑟,𝑥   𝑛,𝑊,𝑟,𝑣,𝑤   𝑥,𝑦,𝑧,𝑊   ,𝑟,𝑥,𝑦,𝑧   𝑛,𝐼,𝑟,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efgval2
Dummy variables 𝑎 𝑏 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . 3 = ( ~FG𝐼)
31, 2efgval 18835 . 2 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
4 efgval2.m . . . . . . . . . . 11 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
5 efgval2.t . . . . . . . . . . 11 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
61, 2, 4, 5efgtf 18840 . . . . . . . . . 10 (𝑥𝑊 → ((𝑇𝑥) = (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ∧ (𝑇𝑥):((0...(♯‘𝑥)) × (𝐼 × 2o))⟶𝑊))
76simpld 498 . . . . . . . . 9 (𝑥𝑊 → (𝑇𝑥) = (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
87rneqd 5772 . . . . . . . 8 (𝑥𝑊 → ran (𝑇𝑥) = ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
98sseq1d 3946 . . . . . . 7 (𝑥𝑊 → (ran (𝑇𝑥) ⊆ [𝑥]𝑟 ↔ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ⊆ [𝑥]𝑟))
10 dfss3 3903 . . . . . . . 8 (ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ⊆ [𝑥]𝑟 ↔ ∀𝑎 ∈ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))𝑎 ∈ [𝑥]𝑟)
11 ovex 7168 . . . . . . . . . . 11 (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ∈ V
1211rgen2w 3119 . . . . . . . . . 10 𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ∈ V
13 eqid 2798 . . . . . . . . . . 11 (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) = (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))
14 vex 3444 . . . . . . . . . . . . 13 𝑎 ∈ V
15 vex 3444 . . . . . . . . . . . . 13 𝑥 ∈ V
1614, 15elec 8316 . . . . . . . . . . . 12 (𝑎 ∈ [𝑥]𝑟𝑥𝑟𝑎)
17 breq2 5034 . . . . . . . . . . . 12 (𝑎 = (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) → (𝑥𝑟𝑎𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
1816, 17syl5bb 286 . . . . . . . . . . 11 (𝑎 = (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) → (𝑎 ∈ [𝑥]𝑟𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
1913, 18ralrnmpo 7268 . . . . . . . . . 10 (∀𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ∈ V → (∀𝑎 ∈ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))𝑎 ∈ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
2012, 19ax-mp 5 . . . . . . . . 9 (∀𝑎 ∈ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))𝑎 ∈ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))
21 id 22 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨𝑎, 𝑏⟩ → 𝑢 = ⟨𝑎, 𝑏⟩)
22 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑎, 𝑏⟩ → (𝑀𝑢) = (𝑀‘⟨𝑎, 𝑏⟩))
23 df-ov 7138 . . . . . . . . . . . . . . . . 17 (𝑎𝑀𝑏) = (𝑀‘⟨𝑎, 𝑏⟩)
2422, 23eqtr4di 2851 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨𝑎, 𝑏⟩ → (𝑀𝑢) = (𝑎𝑀𝑏))
2521, 24s2eqd 14216 . . . . . . . . . . . . . . 15 (𝑢 = ⟨𝑎, 𝑏⟩ → ⟨“𝑢(𝑀𝑢)”⟩ = ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩)
2625oteq3d 4779 . . . . . . . . . . . . . 14 (𝑢 = ⟨𝑎, 𝑏⟩ → ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩ = ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩)
2726oveq2d 7151 . . . . . . . . . . . . 13 (𝑢 = ⟨𝑎, 𝑏⟩ → (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) = (𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩))
2827breq2d 5042 . . . . . . . . . . . 12 (𝑢 = ⟨𝑎, 𝑏⟩ → (𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ↔ 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩)))
2928ralxp 5676 . . . . . . . . . . 11 (∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩))
30 eqidd 2799 . . . . . . . . . . . . . . . . 17 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑎, 𝑏⟩ = ⟨𝑎, 𝑏⟩)
314efgmval 18830 . . . . . . . . . . . . . . . . 17 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎𝑀𝑏) = ⟨𝑎, (1o𝑏)⟩)
3230, 31s2eqd 14216 . . . . . . . . . . . . . . . 16 ((𝑎𝐼𝑏 ∈ 2o) → ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩ = ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)
3332oteq3d 4779 . . . . . . . . . . . . . . 15 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩ = ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)
3433oveq2d 7151 . . . . . . . . . . . . . 14 ((𝑎𝐼𝑏 ∈ 2o) → (𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩) = (𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
3534breq2d 5042 . . . . . . . . . . . . 13 ((𝑎𝐼𝑏 ∈ 2o) → (𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩) ↔ 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
3635ralbidva 3161 . . . . . . . . . . . 12 (𝑎𝐼 → (∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩) ↔ ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
3736ralbiia 3132 . . . . . . . . . . 11 (∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
3829, 37bitri 278 . . . . . . . . . 10 (∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
3938ralbii 3133 . . . . . . . . 9 (∀𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
4020, 39bitri 278 . . . . . . . 8 (∀𝑎 ∈ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))𝑎 ∈ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
4110, 40bitri 278 . . . . . . 7 (ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ⊆ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
429, 41syl6bb 290 . . . . . 6 (𝑥𝑊 → (ran (𝑇𝑥) ⊆ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
4342ralbiia 3132 . . . . 5 (∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟 ↔ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
4443anbi2i 625 . . . 4 ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟) ↔ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
4544abbii 2863 . . 3 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟)} = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
4645inteqi 4842 . 2 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟)} = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
473, 46eqtr4i 2824 1 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟)}
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  Vcvv 3441  cdif 3878  wss 3881  cop 4531  cotp 4533   cint 4838   class class class wbr 5030  cmpt 5110   I cid 5424   × cxp 5517  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  1oc1o 8078  2oc2o 8079   Er wer 8269  [cec 8270  0cc0 10526  ...cfz 12885  chash 13686  Word cword 13857   splice csplice 14102  ⟨“cs2 14194   ~FG cefg 18824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-ec 8274  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-s2 14201  df-efg 18827
This theorem is referenced by:  efgi2  18843  efgrelexlemb  18868  efgcpbllemb  18873
  Copyright terms: Public domain W3C validator