MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgval2 Structured version   Visualization version   GIF version

Theorem efgval2 19630
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efgval2 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟)}
Distinct variable groups:   𝑦,𝑟,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧,𝑟,𝑥   𝑛,𝑀   𝑣,𝑟,𝑤,𝑥,𝑀   𝑇,𝑟,𝑥   𝑛,𝑊,𝑟,𝑣,𝑤   𝑥,𝑦,𝑧,𝑊   ,𝑟,𝑥,𝑦,𝑧   𝑛,𝐼,𝑟,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efgval2
Dummy variables 𝑎 𝑏 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . 3 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . 3 = ( ~FG𝐼)
31, 2efgval 19623 . 2 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
4 efgval2.m . . . . . . . . . . 11 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
5 efgval2.t . . . . . . . . . . 11 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
61, 2, 4, 5efgtf 19628 . . . . . . . . . 10 (𝑥𝑊 → ((𝑇𝑥) = (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ∧ (𝑇𝑥):((0...(♯‘𝑥)) × (𝐼 × 2o))⟶𝑊))
76simpld 494 . . . . . . . . 9 (𝑥𝑊 → (𝑇𝑥) = (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
87rneqd 5891 . . . . . . . 8 (𝑥𝑊 → ran (𝑇𝑥) = ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
98sseq1d 3975 . . . . . . 7 (𝑥𝑊 → (ran (𝑇𝑥) ⊆ [𝑥]𝑟 ↔ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ⊆ [𝑥]𝑟))
10 dfss3 3932 . . . . . . . 8 (ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ⊆ [𝑥]𝑟 ↔ ∀𝑎 ∈ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))𝑎 ∈ [𝑥]𝑟)
11 ovex 7402 . . . . . . . . . . 11 (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ∈ V
1211rgen2w 3049 . . . . . . . . . 10 𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ∈ V
13 eqid 2729 . . . . . . . . . . 11 (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) = (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))
14 vex 3448 . . . . . . . . . . . . 13 𝑎 ∈ V
15 vex 3448 . . . . . . . . . . . . 13 𝑥 ∈ V
1614, 15elec 8694 . . . . . . . . . . . 12 (𝑎 ∈ [𝑥]𝑟𝑥𝑟𝑎)
17 breq2 5106 . . . . . . . . . . . 12 (𝑎 = (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) → (𝑥𝑟𝑎𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
1816, 17bitrid 283 . . . . . . . . . . 11 (𝑎 = (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) → (𝑎 ∈ [𝑥]𝑟𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
1913, 18ralrnmpo 7508 . . . . . . . . . 10 (∀𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ∈ V → (∀𝑎 ∈ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))𝑎 ∈ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)))
2012, 19ax-mp 5 . . . . . . . . 9 (∀𝑎 ∈ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))𝑎 ∈ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))
21 id 22 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨𝑎, 𝑏⟩ → 𝑢 = ⟨𝑎, 𝑏⟩)
22 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑎, 𝑏⟩ → (𝑀𝑢) = (𝑀‘⟨𝑎, 𝑏⟩))
23 df-ov 7372 . . . . . . . . . . . . . . . . 17 (𝑎𝑀𝑏) = (𝑀‘⟨𝑎, 𝑏⟩)
2422, 23eqtr4di 2782 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨𝑎, 𝑏⟩ → (𝑀𝑢) = (𝑎𝑀𝑏))
2521, 24s2eqd 14805 . . . . . . . . . . . . . . 15 (𝑢 = ⟨𝑎, 𝑏⟩ → ⟨“𝑢(𝑀𝑢)”⟩ = ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩)
2625oteq3d 4847 . . . . . . . . . . . . . 14 (𝑢 = ⟨𝑎, 𝑏⟩ → ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩ = ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩)
2726oveq2d 7385 . . . . . . . . . . . . 13 (𝑢 = ⟨𝑎, 𝑏⟩ → (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) = (𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩))
2827breq2d 5114 . . . . . . . . . . . 12 (𝑢 = ⟨𝑎, 𝑏⟩ → (𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ↔ 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩)))
2928ralxp 5795 . . . . . . . . . . 11 (∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩))
30 eqidd 2730 . . . . . . . . . . . . . . . . 17 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑎, 𝑏⟩ = ⟨𝑎, 𝑏⟩)
314efgmval 19618 . . . . . . . . . . . . . . . . 17 ((𝑎𝐼𝑏 ∈ 2o) → (𝑎𝑀𝑏) = ⟨𝑎, (1o𝑏)⟩)
3230, 31s2eqd 14805 . . . . . . . . . . . . . . . 16 ((𝑎𝐼𝑏 ∈ 2o) → ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩ = ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩)
3332oteq3d 4847 . . . . . . . . . . . . . . 15 ((𝑎𝐼𝑏 ∈ 2o) → ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩ = ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)
3433oveq2d 7385 . . . . . . . . . . . . . 14 ((𝑎𝐼𝑏 ∈ 2o) → (𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩) = (𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
3534breq2d 5114 . . . . . . . . . . . . 13 ((𝑎𝐼𝑏 ∈ 2o) → (𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩) ↔ 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
3635ralbidva 3154 . . . . . . . . . . . 12 (𝑎𝐼 → (∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩) ↔ ∀𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
3736ralbiia 3073 . . . . . . . . . . 11 (∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩(𝑎𝑀𝑏)”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
3829, 37bitri 275 . . . . . . . . . 10 (∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
3938ralbii 3075 . . . . . . . . 9 (∀𝑚 ∈ (0...(♯‘𝑥))∀𝑢 ∈ (𝐼 × 2o)𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩) ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
4020, 39bitri 275 . . . . . . . 8 (∀𝑎 ∈ ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩))𝑎 ∈ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
4110, 40bitri 275 . . . . . . 7 (ran (𝑚 ∈ (0...(♯‘𝑥)), 𝑢 ∈ (𝐼 × 2o) ↦ (𝑥 splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ⊆ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
429, 41bitrdi 287 . . . . . 6 (𝑥𝑊 → (ran (𝑇𝑥) ⊆ [𝑥]𝑟 ↔ ∀𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
4342ralbiia 3073 . . . . 5 (∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟 ↔ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
4443anbi2i 623 . . . 4 ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟) ↔ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
4544abbii 2796 . . 3 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟)} = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
4645inteqi 4910 . 2 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟)} = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑚 ∈ (0...(♯‘𝑥))∀𝑎𝐼𝑏 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑚, 𝑚, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
473, 46eqtr4i 2755 1 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊 ran (𝑇𝑥) ⊆ [𝑥]𝑟)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3444  cdif 3908  wss 3911  cop 4591  cotp 4593   cint 4906   class class class wbr 5102  cmpt 5183   I cid 5525   × cxp 5629  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1oc1o 8404  2oc2o 8405   Er wer 8645  [cec 8646  0cc0 11044  ...cfz 13444  chash 14271  Word cword 14454   splice csplice 14690  ⟨“cs2 14783   ~FG cefg 19612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-s2 14790  df-efg 19615
This theorem is referenced by:  efgi2  19631  efgrelexlemb  19656  efgcpbllemb  19661
  Copyright terms: Public domain W3C validator