![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrds2m | Structured version Visualization version GIF version |
Description: Extract two adjacent symbols from a word in reverse direction. (Contributed by AV, 11-May-2022.) |
Ref | Expression |
---|---|
swrds2m | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) = 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 13441 | . . . . . . . 8 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ ℤ) | |
2 | 1 | zcnd 12608 | . . . . . . 7 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ ℂ) |
3 | 2cnd 12231 | . . . . . . 7 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 2 ∈ ℂ) | |
4 | 2, 3 | npcand 11516 | . . . . . 6 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → ((𝑁 − 2) + 2) = 𝑁) |
5 | 4 | eqcomd 2742 | . . . . 5 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 = ((𝑁 − 2) + 2)) |
6 | 5 | opeq2d 4837 | . . . 4 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 〈(𝑁 − 2), 𝑁〉 = 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉) |
7 | 6 | oveq2d 7373 | . . 3 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) = (𝑊 substr 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉)) |
8 | 7 | adantl 482 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) = (𝑊 substr 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉)) |
9 | simpl 483 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
10 | elfzuz 13437 | . . . . 5 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ (ℤ≥‘2)) | |
11 | uznn0sub 12802 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 2) ∈ ℕ0) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑁 − 2) ∈ ℕ0) |
13 | 12 | adantl 482 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑁 − 2) ∈ ℕ0) |
14 | 1cnd 11150 | . . . . . . 7 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 1 ∈ ℂ) | |
15 | 2, 3, 14 | subsubd 11540 | . . . . . 6 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1)) |
16 | 2m1e1 12279 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
17 | 16 | oveq2i 7368 | . . . . . 6 ⊢ (𝑁 − (2 − 1)) = (𝑁 − 1) |
18 | 15, 17 | eqtr3di 2791 | . . . . 5 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → ((𝑁 − 2) + 1) = (𝑁 − 1)) |
19 | 2eluzge1 12819 | . . . . . . . 8 ⊢ 2 ∈ (ℤ≥‘1) | |
20 | fzss1 13480 | . . . . . . . 8 ⊢ (2 ∈ (ℤ≥‘1) → (2...(♯‘𝑊)) ⊆ (1...(♯‘𝑊))) | |
21 | 19, 20 | ax-mp 5 | . . . . . . 7 ⊢ (2...(♯‘𝑊)) ⊆ (1...(♯‘𝑊)) |
22 | 21 | sseli 3940 | . . . . . 6 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ (1...(♯‘𝑊))) |
23 | fz1fzo0m1 13620 | . . . . . 6 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → (𝑁 − 1) ∈ (0..^(♯‘𝑊))) | |
24 | 22, 23 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑁 − 1) ∈ (0..^(♯‘𝑊))) |
25 | 18, 24 | eqeltrd 2838 | . . . 4 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → ((𝑁 − 2) + 1) ∈ (0..^(♯‘𝑊))) |
26 | 25 | adantl 482 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → ((𝑁 − 2) + 1) ∈ (0..^(♯‘𝑊))) |
27 | swrds2 14829 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑁 − 2) ∈ ℕ0 ∧ ((𝑁 − 2) + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉) = 〈“(𝑊‘(𝑁 − 2))(𝑊‘((𝑁 − 2) + 1))”〉) | |
28 | 9, 13, 26, 27 | syl3anc 1371 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉) = 〈“(𝑊‘(𝑁 − 2))(𝑊‘((𝑁 − 2) + 1))”〉) |
29 | eqidd 2737 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊‘(𝑁 − 2)) = (𝑊‘(𝑁 − 2))) | |
30 | 18 | fveq2d 6846 | . . . 4 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑊‘((𝑁 − 2) + 1)) = (𝑊‘(𝑁 − 1))) |
31 | 30 | adantl 482 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊‘((𝑁 − 2) + 1)) = (𝑊‘(𝑁 − 1))) |
32 | 29, 31 | s2eqd 14752 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → 〈“(𝑊‘(𝑁 − 2))(𝑊‘((𝑁 − 2) + 1))”〉 = 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉) |
33 | 8, 28, 32 | 3eqtrd 2780 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) = 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3910 〈cop 4592 ‘cfv 6496 (class class class)co 7357 0cc0 11051 1c1 11052 + caddc 11054 − cmin 11385 2c2 12208 ℕ0cn0 12413 ℤ≥cuz 12763 ...cfz 13424 ..^cfzo 13567 ♯chash 14230 Word cword 14402 substr csubstr 14528 〈“cs2 14730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-hash 14231 df-word 14403 df-concat 14459 df-s1 14484 df-substr 14529 df-s2 14737 |
This theorem is referenced by: 2clwwlk2clwwlklem 29290 |
Copyright terms: Public domain | W3C validator |