Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > swrds2m | Structured version Visualization version GIF version |
Description: Extract two adjacent symbols from a word in reverse direction. (Contributed by AV, 11-May-2022.) |
Ref | Expression |
---|---|
swrds2m | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) = 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzelz 13185 | . . . . . . . 8 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ ℤ) | |
2 | 1 | zcnd 12356 | . . . . . . 7 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ ℂ) |
3 | 2cnd 11981 | . . . . . . 7 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 2 ∈ ℂ) | |
4 | 2, 3 | npcand 11266 | . . . . . 6 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → ((𝑁 − 2) + 2) = 𝑁) |
5 | 4 | eqcomd 2744 | . . . . 5 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 = ((𝑁 − 2) + 2)) |
6 | 5 | opeq2d 4808 | . . . 4 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 〈(𝑁 − 2), 𝑁〉 = 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉) |
7 | 6 | oveq2d 7271 | . . 3 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) = (𝑊 substr 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉)) |
8 | 7 | adantl 481 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) = (𝑊 substr 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉)) |
9 | simpl 482 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
10 | elfzuz 13181 | . . . . 5 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ (ℤ≥‘2)) | |
11 | uznn0sub 12546 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 2) ∈ ℕ0) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑁 − 2) ∈ ℕ0) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑁 − 2) ∈ ℕ0) |
14 | 1cnd 10901 | . . . . . . 7 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 1 ∈ ℂ) | |
15 | 2, 3, 14 | subsubd 11290 | . . . . . 6 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1)) |
16 | 2m1e1 12029 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
17 | 16 | oveq2i 7266 | . . . . . 6 ⊢ (𝑁 − (2 − 1)) = (𝑁 − 1) |
18 | 15, 17 | eqtr3di 2794 | . . . . 5 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → ((𝑁 − 2) + 1) = (𝑁 − 1)) |
19 | 2eluzge1 12563 | . . . . . . . 8 ⊢ 2 ∈ (ℤ≥‘1) | |
20 | fzss1 13224 | . . . . . . . 8 ⊢ (2 ∈ (ℤ≥‘1) → (2...(♯‘𝑊)) ⊆ (1...(♯‘𝑊))) | |
21 | 19, 20 | ax-mp 5 | . . . . . . 7 ⊢ (2...(♯‘𝑊)) ⊆ (1...(♯‘𝑊)) |
22 | 21 | sseli 3913 | . . . . . 6 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ (1...(♯‘𝑊))) |
23 | fz1fzo0m1 13363 | . . . . . 6 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → (𝑁 − 1) ∈ (0..^(♯‘𝑊))) | |
24 | 22, 23 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑁 − 1) ∈ (0..^(♯‘𝑊))) |
25 | 18, 24 | eqeltrd 2839 | . . . 4 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → ((𝑁 − 2) + 1) ∈ (0..^(♯‘𝑊))) |
26 | 25 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → ((𝑁 − 2) + 1) ∈ (0..^(♯‘𝑊))) |
27 | swrds2 14581 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑁 − 2) ∈ ℕ0 ∧ ((𝑁 − 2) + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉) = 〈“(𝑊‘(𝑁 − 2))(𝑊‘((𝑁 − 2) + 1))”〉) | |
28 | 9, 13, 26, 27 | syl3anc 1369 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉) = 〈“(𝑊‘(𝑁 − 2))(𝑊‘((𝑁 − 2) + 1))”〉) |
29 | eqidd 2739 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊‘(𝑁 − 2)) = (𝑊‘(𝑁 − 2))) | |
30 | 18 | fveq2d 6760 | . . . 4 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑊‘((𝑁 − 2) + 1)) = (𝑊‘(𝑁 − 1))) |
31 | 30 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊‘((𝑁 − 2) + 1)) = (𝑊‘(𝑁 − 1))) |
32 | 29, 31 | s2eqd 14504 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → 〈“(𝑊‘(𝑁 − 2))(𝑊‘((𝑁 − 2) + 1))”〉 = 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉) |
33 | 8, 28, 32 | 3eqtrd 2782 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) = 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 〈cop 4564 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 − cmin 11135 2c2 11958 ℕ0cn0 12163 ℤ≥cuz 12511 ...cfz 13168 ..^cfzo 13311 ♯chash 13972 Word cword 14145 substr csubstr 14281 〈“cs2 14482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-substr 14282 df-s2 14489 |
This theorem is referenced by: 2clwwlk2clwwlklem 28611 |
Copyright terms: Public domain | W3C validator |