| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swrds2m | Structured version Visualization version GIF version | ||
| Description: Extract two adjacent symbols from a word in reverse direction. (Contributed by AV, 11-May-2022.) |
| Ref | Expression |
|---|---|
| swrds2m | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) = 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 13485 | . . . . . . . 8 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ ℤ) | |
| 2 | 1 | zcnd 12639 | . . . . . . 7 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ ℂ) |
| 3 | 2cnd 12264 | . . . . . . 7 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 2 ∈ ℂ) | |
| 4 | 2, 3 | npcand 11537 | . . . . . 6 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → ((𝑁 − 2) + 2) = 𝑁) |
| 5 | 4 | eqcomd 2735 | . . . . 5 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 = ((𝑁 − 2) + 2)) |
| 6 | 5 | opeq2d 4844 | . . . 4 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 〈(𝑁 − 2), 𝑁〉 = 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉) |
| 7 | 6 | oveq2d 7403 | . . 3 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) = (𝑊 substr 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉)) |
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) = (𝑊 substr 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉)) |
| 9 | simpl 482 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
| 10 | elfzuz 13481 | . . . . 5 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ (ℤ≥‘2)) | |
| 11 | uznn0sub 12832 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 2) ∈ ℕ0) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑁 − 2) ∈ ℕ0) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑁 − 2) ∈ ℕ0) |
| 14 | 1cnd 11169 | . . . . . . 7 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 1 ∈ ℂ) | |
| 15 | 2, 3, 14 | subsubd 11561 | . . . . . 6 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1)) |
| 16 | 2m1e1 12307 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
| 17 | 16 | oveq2i 7398 | . . . . . 6 ⊢ (𝑁 − (2 − 1)) = (𝑁 − 1) |
| 18 | 15, 17 | eqtr3di 2779 | . . . . 5 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → ((𝑁 − 2) + 1) = (𝑁 − 1)) |
| 19 | 2eluzge1 12841 | . . . . . . . 8 ⊢ 2 ∈ (ℤ≥‘1) | |
| 20 | fzss1 13524 | . . . . . . . 8 ⊢ (2 ∈ (ℤ≥‘1) → (2...(♯‘𝑊)) ⊆ (1...(♯‘𝑊))) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . . 7 ⊢ (2...(♯‘𝑊)) ⊆ (1...(♯‘𝑊)) |
| 22 | 21 | sseli 3942 | . . . . . 6 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → 𝑁 ∈ (1...(♯‘𝑊))) |
| 23 | fz1fzo0m1 13671 | . . . . . 6 ⊢ (𝑁 ∈ (1...(♯‘𝑊)) → (𝑁 − 1) ∈ (0..^(♯‘𝑊))) | |
| 24 | 22, 23 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑁 − 1) ∈ (0..^(♯‘𝑊))) |
| 25 | 18, 24 | eqeltrd 2828 | . . . 4 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → ((𝑁 − 2) + 1) ∈ (0..^(♯‘𝑊))) |
| 26 | 25 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → ((𝑁 − 2) + 1) ∈ (0..^(♯‘𝑊))) |
| 27 | swrds2 14906 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑁 − 2) ∈ ℕ0 ∧ ((𝑁 − 2) + 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉) = 〈“(𝑊‘(𝑁 − 2))(𝑊‘((𝑁 − 2) + 1))”〉) | |
| 28 | 9, 13, 26, 27 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), ((𝑁 − 2) + 2)〉) = 〈“(𝑊‘(𝑁 − 2))(𝑊‘((𝑁 − 2) + 1))”〉) |
| 29 | eqidd 2730 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊‘(𝑁 − 2)) = (𝑊‘(𝑁 − 2))) | |
| 30 | 18 | fveq2d 6862 | . . . 4 ⊢ (𝑁 ∈ (2...(♯‘𝑊)) → (𝑊‘((𝑁 − 2) + 1)) = (𝑊‘(𝑁 − 1))) |
| 31 | 30 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊‘((𝑁 − 2) + 1)) = (𝑊‘(𝑁 − 1))) |
| 32 | 29, 31 | s2eqd 14829 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → 〈“(𝑊‘(𝑁 − 2))(𝑊‘((𝑁 − 2) + 1))”〉 = 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉) |
| 33 | 8, 28, 32 | 3eqtrd 2768 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (2...(♯‘𝑊))) → (𝑊 substr 〈(𝑁 − 2), 𝑁〉) = 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 〈cop 4595 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 − cmin 11405 2c2 12241 ℕ0cn0 12442 ℤ≥cuz 12793 ...cfz 13468 ..^cfzo 13615 ♯chash 14295 Word cword 14478 substr csubstr 14605 〈“cs2 14807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-substr 14606 df-s2 14814 |
| This theorem is referenced by: 2clwwlk2clwwlklem 30275 |
| Copyright terms: Public domain | W3C validator |