![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grstructeld | Structured version Visualization version GIF version |
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
Ref | Expression |
---|---|
gropeld.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) |
gropeld.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
gropeld.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
grstructeld.s | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
grstructeld.f | ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) |
grstructeld.d | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) |
grstructeld.b | ⊢ (𝜑 → (Base‘𝑆) = 𝑉) |
grstructeld.e | ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) |
Ref | Expression |
---|---|
grstructeld | ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gropeld.g | . . 3 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) | |
2 | gropeld.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
3 | gropeld.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
4 | grstructeld.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
5 | grstructeld.f | . . 3 ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) | |
6 | grstructeld.d | . . 3 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) | |
7 | grstructeld.b | . . 3 ⊢ (𝜑 → (Base‘𝑆) = 𝑉) | |
8 | grstructeld.e | . . 3 ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | grstructd 28887 | . 2 ⊢ (𝜑 → [𝑆 / 𝑔]𝑔 ∈ 𝐶) |
10 | sbcel1v 3840 | . 2 ⊢ ([𝑆 / 𝑔]𝑔 ∈ 𝐶 ↔ 𝑆 ∈ 𝐶) | |
11 | 9, 10 | sylib 217 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1531 = wceq 1533 ∈ wcel 2098 [wsbc 3769 ∖ cdif 3937 ∅c0 4318 {csn 4624 class class class wbr 5143 dom cdm 5672 Fun wfun 6536 ‘cfv 6542 ≤ cle 11277 2c2 12295 ♯chash 14319 Basecbs 17177 .efcedgf 28841 Vtxcvtx 28851 iEdgciedg 28852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-n0 12501 df-xnn0 12573 df-z 12587 df-uz 12851 df-fz 13515 df-hash 14320 df-vtx 28853 df-iedg 28854 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |