| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grstructeld | Structured version Visualization version GIF version | ||
| Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
| Ref | Expression |
|---|---|
| gropeld.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) |
| gropeld.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
| gropeld.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| grstructeld.s | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
| grstructeld.f | ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) |
| grstructeld.d | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) |
| grstructeld.b | ⊢ (𝜑 → (Base‘𝑆) = 𝑉) |
| grstructeld.e | ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) |
| Ref | Expression |
|---|---|
| grstructeld | ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gropeld.g | . . 3 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) | |
| 2 | gropeld.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
| 3 | gropeld.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 4 | grstructeld.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
| 5 | grstructeld.f | . . 3 ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) | |
| 6 | grstructeld.d | . . 3 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) | |
| 7 | grstructeld.b | . . 3 ⊢ (𝜑 → (Base‘𝑆) = 𝑉) | |
| 8 | grstructeld.e | . . 3 ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | grstructd 28995 | . 2 ⊢ (𝜑 → [𝑆 / 𝑔]𝑔 ∈ 𝐶) |
| 10 | sbcel1v 3810 | . 2 ⊢ ([𝑆 / 𝑔]𝑔 ∈ 𝐶 ↔ 𝑆 ∈ 𝐶) | |
| 11 | 9, 10 | sylib 218 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 [wsbc 3744 ∖ cdif 3902 ∅c0 4286 {csn 4579 class class class wbr 5095 dom cdm 5623 Fun wfun 6480 ‘cfv 6486 ≤ cle 11169 2c2 12201 ♯chash 14255 Basecbs 17138 .efcedgf 28951 Vtxcvtx 28959 iEdgciedg 28960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 df-vtx 28961 df-iedg 28962 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |