![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grstructeld | Structured version Visualization version GIF version |
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
Ref | Expression |
---|---|
gropeld.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) |
gropeld.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
gropeld.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
grstructeld.s | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
grstructeld.f | ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) |
grstructeld.d | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) |
grstructeld.b | ⊢ (𝜑 → (Base‘𝑆) = 𝑉) |
grstructeld.e | ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) |
Ref | Expression |
---|---|
grstructeld | ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gropeld.g | . . 3 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) | |
2 | gropeld.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
3 | gropeld.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
4 | grstructeld.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
5 | grstructeld.f | . . 3 ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) | |
6 | grstructeld.d | . . 3 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) | |
7 | grstructeld.b | . . 3 ⊢ (𝜑 → (Base‘𝑆) = 𝑉) | |
8 | grstructeld.e | . . 3 ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | grstructd 28800 | . 2 ⊢ (𝜑 → [𝑆 / 𝑔]𝑔 ∈ 𝐶) |
10 | sbcel1v 3843 | . 2 ⊢ ([𝑆 / 𝑔]𝑔 ∈ 𝐶 ↔ 𝑆 ∈ 𝐶) | |
11 | 9, 10 | sylib 217 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 = wceq 1533 ∈ wcel 2098 [wsbc 3772 ∖ cdif 3940 ∅c0 4317 {csn 4623 class class class wbr 5141 dom cdm 5669 Fun wfun 6531 ‘cfv 6537 ≤ cle 11253 2c2 12271 ♯chash 14295 Basecbs 17153 .efcedgf 28754 Vtxcvtx 28764 iEdgciedg 28765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13491 df-hash 14296 df-vtx 28766 df-iedg 28767 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |