![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grstructeld | Structured version Visualization version GIF version |
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
Ref | Expression |
---|---|
gropeld.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) |
gropeld.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
gropeld.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
grstructeld.s | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
grstructeld.f | ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) |
grstructeld.d | ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) |
grstructeld.b | ⊢ (𝜑 → (Base‘𝑆) = 𝑉) |
grstructeld.e | ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) |
Ref | Expression |
---|---|
grstructeld | ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gropeld.g | . . 3 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) | |
2 | gropeld.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
3 | gropeld.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
4 | grstructeld.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
5 | grstructeld.f | . . 3 ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) | |
6 | grstructeld.d | . . 3 ⊢ (𝜑 → 2 ≤ (♯‘dom 𝑆)) | |
7 | grstructeld.b | . . 3 ⊢ (𝜑 → (Base‘𝑆) = 𝑉) | |
8 | grstructeld.e | . . 3 ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | grstructd 29067 | . 2 ⊢ (𝜑 → [𝑆 / 𝑔]𝑔 ∈ 𝐶) |
10 | sbcel1v 3875 | . 2 ⊢ ([𝑆 / 𝑔]𝑔 ∈ 𝐶 ↔ 𝑆 ∈ 𝐶) | |
11 | 9, 10 | sylib 218 | 1 ⊢ (𝜑 → 𝑆 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 [wsbc 3804 ∖ cdif 3973 ∅c0 4352 {csn 4648 class class class wbr 5166 dom cdm 5700 Fun wfun 6567 ‘cfv 6573 ≤ cle 11325 2c2 12348 ♯chash 14379 Basecbs 17258 .efcedgf 29021 Vtxcvtx 29031 iEdgciedg 29032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 df-vtx 29033 df-iedg 29034 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |