MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gropeld Structured version   Visualization version   GIF version

Theorem gropeld 26812
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then the ordered pair 𝑉, 𝐸 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
gropeld.g (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔𝐶))
gropeld.v (𝜑𝑉𝑈)
gropeld.e (𝜑𝐸𝑊)
Assertion
Ref Expression
gropeld (𝜑 → ⟨𝑉, 𝐸⟩ ∈ 𝐶)
Distinct variable groups:   𝐶,𝑔   𝑔,𝐸   𝑔,𝑉   𝜑,𝑔
Allowed substitution hints:   𝑈(𝑔)   𝑊(𝑔)

Proof of Theorem gropeld
StepHypRef Expression
1 gropeld.g . . 3 (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔𝐶))
2 gropeld.v . . 3 (𝜑𝑉𝑈)
3 gropeld.e . . 3 (𝜑𝐸𝑊)
41, 2, 3gropd 26810 . 2 (𝜑[𝑉, 𝐸⟩ / 𝑔]𝑔𝐶)
5 sbcel1v 3838 . 2 ([𝑉, 𝐸⟩ / 𝑔]𝑔𝐶 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐶)
64, 5sylib 220 1 (𝜑 → ⟨𝑉, 𝐸⟩ ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1531   = wceq 1533  wcel 2110  [wsbc 3771  cop 4566  cfv 6349  Vtxcvtx 26775  iEdgciedg 26776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fv 6357  df-1st 7683  df-2nd 7684  df-vtx 26777  df-iedg 26778
This theorem is referenced by:  upgr0eopALT  26895  upgr1eopALT  26896  upgrspanop  27073  umgrspanop  27074  usgrspanop  27075  cplgrop  27213
  Copyright terms: Public domain W3C validator