MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gropeld Structured version   Visualization version   GIF version

Theorem gropeld 28936
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then the ordered pair 𝑉, 𝐸 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
gropeld.g (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔𝐶))
gropeld.v (𝜑𝑉𝑈)
gropeld.e (𝜑𝐸𝑊)
Assertion
Ref Expression
gropeld (𝜑 → ⟨𝑉, 𝐸⟩ ∈ 𝐶)
Distinct variable groups:   𝐶,𝑔   𝑔,𝐸   𝑔,𝑉   𝜑,𝑔
Allowed substitution hints:   𝑈(𝑔)   𝑊(𝑔)

Proof of Theorem gropeld
StepHypRef Expression
1 gropeld.g . . 3 (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔𝐶))
2 gropeld.v . . 3 (𝜑𝑉𝑈)
3 gropeld.e . . 3 (𝜑𝐸𝑊)
41, 2, 3gropd 28934 . 2 (𝜑[𝑉, 𝐸⟩ / 𝑔]𝑔𝐶)
5 sbcel1v 3816 . 2 ([𝑉, 𝐸⟩ / 𝑔]𝑔𝐶 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐶)
64, 5sylib 218 1 (𝜑 → ⟨𝑉, 𝐸⟩ ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  [wsbc 3750  cop 4591  cfv 6499  Vtxcvtx 28899  iEdgciedg 28900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fv 6507  df-1st 7947  df-2nd 7948  df-vtx 28901  df-iedg 28902
This theorem is referenced by:  upgr0eopALT  29019  upgr1eopALT  29020  upgrspanop  29200  umgrspanop  29201  usgrspanop  29202  cplgrop  29340
  Copyright terms: Public domain W3C validator