Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gropeld | Structured version Visualization version GIF version |
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 11-Oct-2020.) |
Ref | Expression |
---|---|
gropeld.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) |
gropeld.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
gropeld.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
Ref | Expression |
---|---|
gropeld | ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gropeld.g | . . 3 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) | |
2 | gropeld.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
3 | gropeld.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
4 | 1, 2, 3 | gropd 27429 | . 2 ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝑔 ∈ 𝐶) |
5 | sbcel1v 3789 | . 2 ⊢ ([〈𝑉, 𝐸〉 / 𝑔]𝑔 ∈ 𝐶 ↔ 〈𝑉, 𝐸〉 ∈ 𝐶) | |
6 | 4, 5 | sylib 217 | 1 ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2101 [wsbc 3718 〈cop 4570 ‘cfv 6447 Vtxcvtx 27394 iEdgciedg 27395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-sbc 3719 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-iota 6399 df-fun 6449 df-fv 6455 df-1st 7851 df-2nd 7852 df-vtx 27396 df-iedg 27397 |
This theorem is referenced by: upgr0eopALT 27514 upgr1eopALT 27515 upgrspanop 27692 umgrspanop 27693 usgrspanop 27694 cplgrop 27832 |
Copyright terms: Public domain | W3C validator |