Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gropeld | Structured version Visualization version GIF version |
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 11-Oct-2020.) |
Ref | Expression |
---|---|
gropeld.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) |
gropeld.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
gropeld.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
Ref | Expression |
---|---|
gropeld | ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gropeld.g | . . 3 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) | |
2 | gropeld.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
3 | gropeld.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
4 | 1, 2, 3 | gropd 27631 | . 2 ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝑔 ∈ 𝐶) |
5 | sbcel1v 3797 | . 2 ⊢ ([〈𝑉, 𝐸〉 / 𝑔]𝑔 ∈ 𝐶 ↔ 〈𝑉, 𝐸〉 ∈ 𝐶) | |
6 | 4, 5 | sylib 217 | 1 ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1538 = wceq 1540 ∈ wcel 2105 [wsbc 3726 〈cop 4578 ‘cfv 6473 Vtxcvtx 27596 iEdgciedg 27597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6425 df-fun 6475 df-fv 6481 df-1st 7891 df-2nd 7892 df-vtx 27598 df-iedg 27599 |
This theorem is referenced by: upgr0eopALT 27716 upgr1eopALT 27717 upgrspanop 27894 umgrspanop 27895 usgrspanop 27896 cplgrop 28034 |
Copyright terms: Public domain | W3C validator |