| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gropeld | Structured version Visualization version GIF version | ||
| Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| gropeld.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) |
| gropeld.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
| gropeld.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| gropeld | ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gropeld.g | . . 3 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔 ∈ 𝐶)) | |
| 2 | gropeld.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
| 3 | gropeld.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 4 | 1, 2, 3 | gropd 29015 | . 2 ⊢ (𝜑 → [〈𝑉, 𝐸〉 / 𝑔]𝑔 ∈ 𝐶) |
| 5 | sbcel1v 3836 | . 2 ⊢ ([〈𝑉, 𝐸〉 / 𝑔]𝑔 ∈ 𝐶 ↔ 〈𝑉, 𝐸〉 ∈ 𝐶) | |
| 6 | 4, 5 | sylib 218 | 1 ⊢ (𝜑 → 〈𝑉, 𝐸〉 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 [wsbc 3770 〈cop 4612 ‘cfv 6536 Vtxcvtx 28980 iEdgciedg 28981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fv 6544 df-1st 7993 df-2nd 7994 df-vtx 28982 df-iedg 28983 |
| This theorem is referenced by: upgr0eopALT 29100 upgr1eopALT 29101 upgrspanop 29281 umgrspanop 29282 usgrspanop 29283 cplgrop 29421 |
| Copyright terms: Public domain | W3C validator |