MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gropeld Structured version   Visualization version   GIF version

Theorem gropeld 27431
Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 is an element of an arbitrary class 𝐶, then the ordered pair 𝑉, 𝐸 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) is an element of this class 𝐶. (Contributed by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
gropeld.g (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔𝐶))
gropeld.v (𝜑𝑉𝑈)
gropeld.e (𝜑𝐸𝑊)
Assertion
Ref Expression
gropeld (𝜑 → ⟨𝑉, 𝐸⟩ ∈ 𝐶)
Distinct variable groups:   𝐶,𝑔   𝑔,𝐸   𝑔,𝑉   𝜑,𝑔
Allowed substitution hints:   𝑈(𝑔)   𝑊(𝑔)

Proof of Theorem gropeld
StepHypRef Expression
1 gropeld.g . . 3 (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝑔𝐶))
2 gropeld.v . . 3 (𝜑𝑉𝑈)
3 gropeld.e . . 3 (𝜑𝐸𝑊)
41, 2, 3gropd 27429 . 2 (𝜑[𝑉, 𝐸⟩ / 𝑔]𝑔𝐶)
5 sbcel1v 3789 . 2 ([𝑉, 𝐸⟩ / 𝑔]𝑔𝐶 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐶)
64, 5sylib 217 1 (𝜑 → ⟨𝑉, 𝐸⟩ ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wcel 2101  [wsbc 3718  cop 4570  cfv 6447  Vtxcvtx 27394  iEdgciedg 27395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-sbc 3719  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-iota 6399  df-fun 6449  df-fv 6455  df-1st 7851  df-2nd 7852  df-vtx 27396  df-iedg 27397
This theorem is referenced by:  upgr0eopALT  27514  upgr1eopALT  27515  upgrspanop  27692  umgrspanop  27693  usgrspanop  27694  cplgrop  27832
  Copyright terms: Public domain W3C validator