| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbima12 | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbima12 | ⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3856 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵)) | |
| 2 | csbeq1 3856 | . . . . 5 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
| 3 | csbeq1 3856 | . . . . 5 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 4 | 2, 3 | imaeq12d 6016 | . . . 4 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
| 5 | 1, 4 | eqeq12d 2745 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))) |
| 6 | vex 3442 | . . . 4 ⊢ 𝑦 ∈ V | |
| 7 | nfcsb1v 3877 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
| 8 | nfcsb1v 3877 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 9 | 7, 8 | nfima 6023 | . . . 4 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) |
| 10 | csbeq1a 3867 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
| 11 | csbeq1a 3867 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 12 | 10, 11 | imaeq12d 6016 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵)) |
| 13 | 6, 9, 12 | csbief 3887 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) |
| 14 | 5, 13 | vtoclg 3511 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
| 15 | csbprc 4362 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ∅) | |
| 16 | csbprc 4362 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
| 17 | 16 | imaeq2d 6015 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ∅)) |
| 18 | ima0 6032 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌𝐹 “ ∅) = ∅ | |
| 19 | 17, 18 | eqtr2di 2781 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∅ = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
| 20 | 15, 19 | eqtrd 2764 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
| 21 | 14, 20 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⦋csb 3853 ∅c0 4286 “ cima 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: csbrn 6156 csbpredg 6259 disjpreima 32546 brtrclfv2 43700 sbcheg 43752 csbfv12gALTVD 44872 |
| Copyright terms: Public domain | W3C validator |