Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbima12 | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.) |
Ref | Expression |
---|---|
csbima12 | ⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3839 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵)) | |
2 | csbeq1 3839 | . . . . 5 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
3 | csbeq1 3839 | . . . . 5 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
4 | 2, 3 | imaeq12d 5967 | . . . 4 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
5 | 1, 4 | eqeq12d 2755 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))) |
6 | vex 3434 | . . . 4 ⊢ 𝑦 ∈ V | |
7 | nfcsb1v 3861 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
8 | nfcsb1v 3861 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | 7, 8 | nfima 5974 | . . . 4 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) |
10 | csbeq1a 3850 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
11 | csbeq1a 3850 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
12 | 10, 11 | imaeq12d 5967 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵)) |
13 | 6, 9, 12 | csbief 3871 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) |
14 | 5, 13 | vtoclg 3503 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
15 | csbprc 4345 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ∅) | |
16 | csbprc 4345 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
17 | 16 | imaeq2d 5966 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ∅)) |
18 | ima0 5982 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌𝐹 “ ∅) = ∅ | |
19 | 17, 18 | eqtr2di 2796 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∅ = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
20 | 15, 19 | eqtrd 2779 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
21 | 14, 20 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ⦋csb 3836 ∅c0 4261 “ cima 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 |
This theorem is referenced by: csbrn 6103 csbpredg 6205 disjpreima 30902 brtrclfv2 41288 sbcheg 41340 csbfv12gALTVD 42472 |
Copyright terms: Public domain | W3C validator |