![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbima12 | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.) |
Ref | Expression |
---|---|
csbima12 | ⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3891 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵)) | |
2 | csbeq1 3891 | . . . . 5 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
3 | csbeq1 3891 | . . . . 5 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
4 | 2, 3 | imaeq12d 6054 | . . . 4 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
5 | 1, 4 | eqeq12d 2742 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))) |
6 | vex 3472 | . . . 4 ⊢ 𝑦 ∈ V | |
7 | nfcsb1v 3913 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
8 | nfcsb1v 3913 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | 7, 8 | nfima 6061 | . . . 4 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) |
10 | csbeq1a 3902 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
11 | csbeq1a 3902 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
12 | 10, 11 | imaeq12d 6054 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵)) |
13 | 6, 9, 12 | csbief 3923 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) |
14 | 5, 13 | vtoclg 3537 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
15 | csbprc 4401 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ∅) | |
16 | csbprc 4401 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
17 | 16 | imaeq2d 6053 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ∅)) |
18 | ima0 6070 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌𝐹 “ ∅) = ∅ | |
19 | 17, 18 | eqtr2di 2783 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∅ = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
20 | 15, 19 | eqtrd 2766 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
21 | 14, 20 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⦋csb 3888 ∅c0 4317 “ cima 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 |
This theorem is referenced by: csbrn 6196 csbpredg 6300 disjpreima 32324 brtrclfv2 43051 sbcheg 43103 csbfv12gALTVD 44233 |
Copyright terms: Public domain | W3C validator |