MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbima12 Structured version   Visualization version   GIF version

Theorem csbima12 6032
Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.)
Assertion
Ref Expression
csbima12 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)

Proof of Theorem csbima12
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3849 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥(𝐹𝐵))
2 csbeq1 3849 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3849 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
42, 3imaeq12d 6014 . . . 4 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
51, 4eqeq12d 2749 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
6 vex 3441 . . . 4 𝑦 ∈ V
7 nfcsb1v 3870 . . . . 5 𝑥𝑦 / 𝑥𝐹
8 nfcsb1v 3870 . . . . 5 𝑥𝑦 / 𝑥𝐵
97, 8nfima 6021 . . . 4 𝑥(𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
10 csbeq1a 3860 . . . . 5 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
11 csbeq1a 3860 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1210, 11imaeq12d 6014 . . . 4 (𝑥 = 𝑦 → (𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵))
136, 9, 12csbief 3880 . . 3 𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
145, 13vtoclg 3508 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
15 csbprc 4358 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = ∅)
16 csbprc 4358 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
1716imaeq2d 6013 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (𝐴 / 𝑥𝐹 “ ∅))
18 ima0 6030 . . . 4 (𝐴 / 𝑥𝐹 “ ∅) = ∅
1917, 18eqtr2di 2785 . . 3 𝐴 ∈ V → ∅ = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
2015, 19eqtrd 2768 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
2114, 20pm2.61i 182 1 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3437  csb 3846  c0 4282  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  csbrn  6155  csbpredg  6259  disjpreima  32566  brtrclfv2  43844  sbcheg  43896  csbfv12gALTVD  45015
  Copyright terms: Public domain W3C validator