MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbima12 Structured version   Visualization version   GIF version

Theorem csbima12 5945
Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.)
Assertion
Ref Expression
csbima12 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)

Proof of Theorem csbima12
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3890 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥(𝐹𝐵))
2 csbeq1 3890 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
3 csbeq1 3890 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
42, 3imaeq12d 5928 . . . 4 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
51, 4eqeq12d 2842 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
6 vex 3503 . . . 4 𝑦 ∈ V
7 nfcsb1v 3911 . . . . 5 𝑥𝑦 / 𝑥𝐹
8 nfcsb1v 3911 . . . . 5 𝑥𝑦 / 𝑥𝐵
97, 8nfima 5935 . . . 4 𝑥(𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
10 csbeq1a 3901 . . . . 5 (𝑥 = 𝑦𝐹 = 𝑦 / 𝑥𝐹)
11 csbeq1a 3901 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1210, 11imaeq12d 5928 . . . 4 (𝑥 = 𝑦 → (𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵))
136, 9, 12csbief 3921 . . 3 𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
145, 13vtoclg 3573 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
15 csbprc 4362 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = ∅)
16 csbprc 4362 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
1716imaeq2d 5927 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (𝐴 / 𝑥𝐹 “ ∅))
18 ima0 5943 . . . 4 (𝐴 / 𝑥𝐹 “ ∅) = ∅
1917, 18syl6req 2878 . . 3 𝐴 ∈ V → ∅ = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
2015, 19eqtrd 2861 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
2114, 20pm2.61i 183 1 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1530  wcel 2107  Vcvv 3500  csb 3887  c0 4295  cima 5557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-br 5064  df-opab 5126  df-xp 5560  df-cnv 5562  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567
This theorem is referenced by:  csbrn  6058  disjpreima  30249  csbpredg  34476  brtrclfv2  39937  sbcheg  39990  csbfv12gALTVD  41098
  Copyright terms: Public domain W3C validator