![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbima12 | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.) |
Ref | Expression |
---|---|
csbima12 | ⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3896 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵)) | |
2 | csbeq1 3896 | . . . . 5 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌𝐹) | |
3 | csbeq1 3896 | . . . . 5 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
4 | 2, 3 | imaeq12d 6060 | . . . 4 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
5 | 1, 4 | eqeq12d 2748 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))) |
6 | vex 3478 | . . . 4 ⊢ 𝑦 ∈ V | |
7 | nfcsb1v 3918 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐹 | |
8 | nfcsb1v 3918 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | 7, 8 | nfima 6067 | . . . 4 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) |
10 | csbeq1a 3907 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐹 = ⦋𝑦 / 𝑥⦌𝐹) | |
11 | csbeq1a 3907 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
12 | 10, 11 | imaeq12d 6060 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵)) |
13 | 6, 9, 12 | csbief 3928 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝑦 / 𝑥⦌𝐹 “ ⦋𝑦 / 𝑥⦌𝐵) |
14 | 5, 13 | vtoclg 3556 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
15 | csbprc 4406 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ∅) | |
16 | csbprc 4406 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
17 | 16 | imaeq2d 6059 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ∅)) |
18 | ima0 6076 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌𝐹 “ ∅) = ∅ | |
19 | 17, 18 | eqtr2di 2789 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∅ = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
20 | 15, 19 | eqtrd 2772 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
21 | 14, 20 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⦋csb 3893 ∅c0 4322 “ cima 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 |
This theorem is referenced by: csbrn 6202 csbpredg 6306 disjpreima 31810 brtrclfv2 42468 sbcheg 42520 csbfv12gALTVD 43650 |
Copyright terms: Public domain | W3C validator |