MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem3 Structured version   Visualization version   GIF version

Theorem sbthlem3 9011
Description: Lemma for sbth 9019. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem3 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem3
StepHypRef Expression
1 sbthlem.1 . . . . . 6 𝐴 ∈ V
2 sbthlem.2 . . . . . 6 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
31, 2sbthlem2 9010 . . . . 5 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
41, 2sbthlem1 9009 . . . . 5 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
53, 4jctil 519 . . . 4 (ran 𝑔𝐴 → ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷))
6 eqss 3946 . . . 4 ( 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ↔ ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷))
75, 6sylibr 234 . . 3 (ran 𝑔𝐴 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
87difeq2d 4075 . 2 (ran 𝑔𝐴 → (𝐴 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
9 imassrn 6026 . . . 4 (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔
10 sstr2 3937 . . . 4 ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔 → (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴))
119, 10ax-mp 5 . . 3 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴)
12 dfss4 4218 . . 3 ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
1311, 12sylib 218 . 2 (ran 𝑔𝐴 → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
148, 13eqtr2d 2769 1 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  Vcvv 3437  cdif 3895  wss 3898   cuni 4860  ran crn 5622  cima 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634
This theorem is referenced by:  sbthlem4  9012  sbthlem5  9013
  Copyright terms: Public domain W3C validator