| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbthlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for sbth 9116. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 | ⊢ 𝐴 ∈ V |
| sbthlem.2 | ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
| Ref | Expression |
|---|---|
| sbthlem3 | ⊢ (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 2 | sbthlem.2 | . . . . . 6 ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | |
| 3 | 1, 2 | sbthlem2 9107 | . . . . 5 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷) |
| 4 | 1, 2 | sbthlem1 9106 | . . . . 5 ⊢ ∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
| 5 | 3, 4 | jctil 519 | . . . 4 ⊢ (ran 𝑔 ⊆ 𝐴 → (∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷)) |
| 6 | eqss 3981 | . . . 4 ⊢ (∪ 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ↔ (∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷)) | |
| 7 | 5, 6 | sylibr 234 | . . 3 ⊢ (ran 𝑔 ⊆ 𝐴 → ∪ 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) |
| 8 | 7 | difeq2d 4108 | . 2 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ ∪ 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))))) |
| 9 | imassrn 6071 | . . . 4 ⊢ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ ran 𝑔 | |
| 10 | sstr2 3972 | . . . 4 ⊢ ((𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ ran 𝑔 → (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴)) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴) |
| 12 | dfss4 4251 | . . 3 ⊢ ((𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) | |
| 13 | 11, 12 | sylib 218 | . 2 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
| 14 | 8, 13 | eqtr2d 2770 | 1 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 Vcvv 3464 ∖ cdif 3930 ⊆ wss 3933 ∪ cuni 4889 ran crn 5668 “ cima 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-xp 5673 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 |
| This theorem is referenced by: sbthlem4 9109 sbthlem5 9110 |
| Copyright terms: Public domain | W3C validator |