| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbthlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for sbth 9061. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 | ⊢ 𝐴 ∈ V |
| sbthlem.2 | ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
| Ref | Expression |
|---|---|
| sbthlem3 | ⊢ (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 2 | sbthlem.2 | . . . . . 6 ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | |
| 3 | 1, 2 | sbthlem2 9052 | . . . . 5 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷) |
| 4 | 1, 2 | sbthlem1 9051 | . . . . 5 ⊢ ∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
| 5 | 3, 4 | jctil 519 | . . . 4 ⊢ (ran 𝑔 ⊆ 𝐴 → (∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷)) |
| 6 | eqss 3962 | . . . 4 ⊢ (∪ 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ↔ (∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷)) | |
| 7 | 5, 6 | sylibr 234 | . . 3 ⊢ (ran 𝑔 ⊆ 𝐴 → ∪ 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) |
| 8 | 7 | difeq2d 4089 | . 2 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ ∪ 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))))) |
| 9 | imassrn 6042 | . . . 4 ⊢ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ ran 𝑔 | |
| 10 | sstr2 3953 | . . . 4 ⊢ ((𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ ran 𝑔 → (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴)) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴) |
| 12 | dfss4 4232 | . . 3 ⊢ ((𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) | |
| 13 | 11, 12 | sylib 218 | . 2 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
| 14 | 8, 13 | eqtr2d 2765 | 1 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ∪ cuni 4871 ran crn 5639 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: sbthlem4 9054 sbthlem5 9055 |
| Copyright terms: Public domain | W3C validator |