MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem4 Structured version   Visualization version   GIF version

Theorem sbthlem4 8618
Description: Lemma for sbth 8625. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem4 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem4
StepHypRef Expression
1 dfdm4 5741 . . . . 5 dom (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = ran (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷)))
2 difss 4083 . . . . . . 7 (𝐵 ∖ (𝑓 𝐷)) ⊆ 𝐵
3 sseq2 3968 . . . . . . 7 (dom 𝑔 = 𝐵 → ((𝐵 ∖ (𝑓 𝐷)) ⊆ dom 𝑔 ↔ (𝐵 ∖ (𝑓 𝐷)) ⊆ 𝐵))
42, 3mpbiri 261 . . . . . 6 (dom 𝑔 = 𝐵 → (𝐵 ∖ (𝑓 𝐷)) ⊆ dom 𝑔)
5 ssdmres 5854 . . . . . 6 ((𝐵 ∖ (𝑓 𝐷)) ⊆ dom 𝑔 ↔ dom (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝐵 ∖ (𝑓 𝐷)))
64, 5sylib 221 . . . . 5 (dom 𝑔 = 𝐵 → dom (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝐵 ∖ (𝑓 𝐷)))
71, 6syl5reqr 2872 . . . 4 (dom 𝑔 = 𝐵 → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))))
8 funcnvres 6411 . . . . . 6 (Fun 𝑔(𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝑔 ↾ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
9 sbthlem.1 . . . . . . . 8 𝐴 ∈ V
10 sbthlem.2 . . . . . . . 8 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
119, 10sbthlem3 8617 . . . . . . 7 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
1211reseq2d 5831 . . . . . 6 (ran 𝑔𝐴 → (𝑔 ↾ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) = (𝑔 ↾ (𝐴 𝐷)))
138, 12sylan9eqr 2879 . . . . 5 ((ran 𝑔𝐴 ∧ Fun 𝑔) → (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝑔 ↾ (𝐴 𝐷)))
1413rneqd 5785 . . . 4 ((ran 𝑔𝐴 ∧ Fun 𝑔) → ran (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = ran (𝑔 ↾ (𝐴 𝐷)))
157, 14sylan9eq 2877 . . 3 ((dom 𝑔 = 𝐵 ∧ (ran 𝑔𝐴 ∧ Fun 𝑔)) → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷)))
1615anassrs 471 . 2 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷)))
17 df-ima 5545 . 2 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
1816, 17syl6reqr 2876 1 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  {cab 2800  Vcvv 3469  cdif 3905  wss 3908   cuni 4813  ccnv 5531  dom cdm 5532  ran crn 5533  cres 5534  cima 5535  Fun wfun 6328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-fun 6336
This theorem is referenced by:  sbthlem6  8620  sbthlem8  8622
  Copyright terms: Public domain W3C validator