MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem4 Structured version   Visualization version   GIF version

Theorem sbthlem4 9127
Description: Lemma for sbth 9134. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem4 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem4
StepHypRef Expression
1 df-ima 5697 . 2 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
2 difss 4135 . . . . . . 7 (𝐵 ∖ (𝑓 𝐷)) ⊆ 𝐵
3 sseq2 4009 . . . . . . 7 (dom 𝑔 = 𝐵 → ((𝐵 ∖ (𝑓 𝐷)) ⊆ dom 𝑔 ↔ (𝐵 ∖ (𝑓 𝐷)) ⊆ 𝐵))
42, 3mpbiri 258 . . . . . 6 (dom 𝑔 = 𝐵 → (𝐵 ∖ (𝑓 𝐷)) ⊆ dom 𝑔)
5 ssdmres 6030 . . . . . 6 ((𝐵 ∖ (𝑓 𝐷)) ⊆ dom 𝑔 ↔ dom (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝐵 ∖ (𝑓 𝐷)))
64, 5sylib 218 . . . . 5 (dom 𝑔 = 𝐵 → dom (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝐵 ∖ (𝑓 𝐷)))
7 dfdm4 5905 . . . . 5 dom (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = ran (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷)))
86, 7eqtr3di 2791 . . . 4 (dom 𝑔 = 𝐵 → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))))
9 funcnvres 6643 . . . . . 6 (Fun 𝑔(𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝑔 ↾ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
10 sbthlem.1 . . . . . . . 8 𝐴 ∈ V
11 sbthlem.2 . . . . . . . 8 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
1210, 11sbthlem3 9126 . . . . . . 7 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
1312reseq2d 5996 . . . . . 6 (ran 𝑔𝐴 → (𝑔 ↾ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) = (𝑔 ↾ (𝐴 𝐷)))
149, 13sylan9eqr 2798 . . . . 5 ((ran 𝑔𝐴 ∧ Fun 𝑔) → (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝑔 ↾ (𝐴 𝐷)))
1514rneqd 5948 . . . 4 ((ran 𝑔𝐴 ∧ Fun 𝑔) → ran (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = ran (𝑔 ↾ (𝐴 𝐷)))
168, 15sylan9eq 2796 . . 3 ((dom 𝑔 = 𝐵 ∧ (ran 𝑔𝐴 ∧ Fun 𝑔)) → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷)))
1716anassrs 467 . 2 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷)))
181, 17eqtr4id 2795 1 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2713  Vcvv 3479  cdif 3947  wss 3950   cuni 4906  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  cima 5687  Fun wfun 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-fun 6562
This theorem is referenced by:  sbthlem6  9129  sbthlem8  9131
  Copyright terms: Public domain W3C validator