MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem4 Structured version   Visualization version   GIF version

Theorem sbthlem4 9090
Description: Lemma for sbth 9097. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem4 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem4
StepHypRef Expression
1 df-ima 5689 . 2 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
2 difss 4131 . . . . . . 7 (𝐵 ∖ (𝑓 𝐷)) ⊆ 𝐵
3 sseq2 4008 . . . . . . 7 (dom 𝑔 = 𝐵 → ((𝐵 ∖ (𝑓 𝐷)) ⊆ dom 𝑔 ↔ (𝐵 ∖ (𝑓 𝐷)) ⊆ 𝐵))
42, 3mpbiri 258 . . . . . 6 (dom 𝑔 = 𝐵 → (𝐵 ∖ (𝑓 𝐷)) ⊆ dom 𝑔)
5 ssdmres 6004 . . . . . 6 ((𝐵 ∖ (𝑓 𝐷)) ⊆ dom 𝑔 ↔ dom (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝐵 ∖ (𝑓 𝐷)))
64, 5sylib 217 . . . . 5 (dom 𝑔 = 𝐵 → dom (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝐵 ∖ (𝑓 𝐷)))
7 dfdm4 5895 . . . . 5 dom (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = ran (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷)))
86, 7eqtr3di 2786 . . . 4 (dom 𝑔 = 𝐵 → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))))
9 funcnvres 6626 . . . . . 6 (Fun 𝑔(𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝑔 ↾ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
10 sbthlem.1 . . . . . . . 8 𝐴 ∈ V
11 sbthlem.2 . . . . . . . 8 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
1210, 11sbthlem3 9089 . . . . . . 7 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
1312reseq2d 5981 . . . . . 6 (ran 𝑔𝐴 → (𝑔 ↾ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) = (𝑔 ↾ (𝐴 𝐷)))
149, 13sylan9eqr 2793 . . . . 5 ((ran 𝑔𝐴 ∧ Fun 𝑔) → (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝑔 ↾ (𝐴 𝐷)))
1514rneqd 5937 . . . 4 ((ran 𝑔𝐴 ∧ Fun 𝑔) → ran (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = ran (𝑔 ↾ (𝐴 𝐷)))
168, 15sylan9eq 2791 . . 3 ((dom 𝑔 = 𝐵 ∧ (ran 𝑔𝐴 ∧ Fun 𝑔)) → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷)))
1716anassrs 467 . 2 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷)))
181, 17eqtr4id 2790 1 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  {cab 2708  Vcvv 3473  cdif 3945  wss 3948   cuni 4908  ccnv 5675  dom cdm 5676  ran crn 5677  cres 5678  cima 5679  Fun wfun 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545
This theorem is referenced by:  sbthlem6  9092  sbthlem8  9094
  Copyright terms: Public domain W3C validator