MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem4 Structured version   Visualization version   GIF version

Theorem sbthlem4 9060
Description: Lemma for sbth 9067. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem4 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem4
StepHypRef Expression
1 df-ima 5654 . 2 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
2 difss 4102 . . . . . . 7 (𝐵 ∖ (𝑓 𝐷)) ⊆ 𝐵
3 sseq2 3976 . . . . . . 7 (dom 𝑔 = 𝐵 → ((𝐵 ∖ (𝑓 𝐷)) ⊆ dom 𝑔 ↔ (𝐵 ∖ (𝑓 𝐷)) ⊆ 𝐵))
42, 3mpbiri 258 . . . . . 6 (dom 𝑔 = 𝐵 → (𝐵 ∖ (𝑓 𝐷)) ⊆ dom 𝑔)
5 ssdmres 5987 . . . . . 6 ((𝐵 ∖ (𝑓 𝐷)) ⊆ dom 𝑔 ↔ dom (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝐵 ∖ (𝑓 𝐷)))
64, 5sylib 218 . . . . 5 (dom 𝑔 = 𝐵 → dom (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝐵 ∖ (𝑓 𝐷)))
7 dfdm4 5862 . . . . 5 dom (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = ran (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷)))
86, 7eqtr3di 2780 . . . 4 (dom 𝑔 = 𝐵 → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))))
9 funcnvres 6597 . . . . . 6 (Fun 𝑔(𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝑔 ↾ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
10 sbthlem.1 . . . . . . . 8 𝐴 ∈ V
11 sbthlem.2 . . . . . . . 8 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
1210, 11sbthlem3 9059 . . . . . . 7 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
1312reseq2d 5953 . . . . . 6 (ran 𝑔𝐴 → (𝑔 ↾ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) = (𝑔 ↾ (𝐴 𝐷)))
149, 13sylan9eqr 2787 . . . . 5 ((ran 𝑔𝐴 ∧ Fun 𝑔) → (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = (𝑔 ↾ (𝐴 𝐷)))
1514rneqd 5905 . . . 4 ((ran 𝑔𝐴 ∧ Fun 𝑔) → ran (𝑔 ↾ (𝐵 ∖ (𝑓 𝐷))) = ran (𝑔 ↾ (𝐴 𝐷)))
168, 15sylan9eq 2785 . . 3 ((dom 𝑔 = 𝐵 ∧ (ran 𝑔𝐴 ∧ Fun 𝑔)) → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷)))
1716anassrs 467 . 2 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷)))
181, 17eqtr4id 2784 1 (((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  Vcvv 3450  cdif 3914  wss 3917   cuni 4874  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516
This theorem is referenced by:  sbthlem6  9062  sbthlem8  9064
  Copyright terms: Public domain W3C validator