MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem5 Structured version   Visualization version   GIF version

Theorem sbthlem5 9087
Description: Lemma for sbth 9093. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlem5 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → dom 𝐻 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem5
StepHypRef Expression
1 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
21dmeqi 5905 . . . 4 dom 𝐻 = dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3 dmun 5911 . . . . 5 dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷)))
4 dmres 6004 . . . . . 6 dom (𝑓 𝐷) = ( 𝐷 ∩ dom 𝑓)
5 dmres 6004 . . . . . . 7 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ dom 𝑔)
6 df-rn 5688 . . . . . . . . 9 ran 𝑔 = dom 𝑔
76eqcomi 2742 . . . . . . . 8 dom 𝑔 = ran 𝑔
87ineq2i 4210 . . . . . . 7 ((𝐴 𝐷) ∩ dom 𝑔) = ((𝐴 𝐷) ∩ ran 𝑔)
95, 8eqtri 2761 . . . . . 6 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ ran 𝑔)
104, 9uneq12i 4162 . . . . 5 (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷))) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
113, 10eqtri 2761 . . . 4 dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
122, 11eqtri 2761 . . 3 dom 𝐻 = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
13 sbthlem.1 . . . . . . . . 9 𝐴 ∈ V
14 sbthlem.2 . . . . . . . . 9 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
1513, 14sbthlem1 9083 . . . . . . . 8 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
16 difss 4132 . . . . . . . 8 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴
1715, 16sstri 3992 . . . . . . 7 𝐷𝐴
18 sseq2 4009 . . . . . . 7 (dom 𝑓 = 𝐴 → ( 𝐷 ⊆ dom 𝑓 𝐷𝐴))
1917, 18mpbiri 258 . . . . . 6 (dom 𝑓 = 𝐴 𝐷 ⊆ dom 𝑓)
20 dfss 3967 . . . . . 6 ( 𝐷 ⊆ dom 𝑓 𝐷 = ( 𝐷 ∩ dom 𝑓))
2119, 20sylib 217 . . . . 5 (dom 𝑓 = 𝐴 𝐷 = ( 𝐷 ∩ dom 𝑓))
2221uneq1d 4163 . . . 4 (dom 𝑓 = 𝐴 → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)))
2313, 14sbthlem3 9085 . . . . . . 7 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
24 imassrn 6071 . . . . . . 7 (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔
2523, 24eqsstrrdi 4038 . . . . . 6 (ran 𝑔𝐴 → (𝐴 𝐷) ⊆ ran 𝑔)
26 dfss 3967 . . . . . 6 ((𝐴 𝐷) ⊆ ran 𝑔 ↔ (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
2725, 26sylib 217 . . . . 5 (ran 𝑔𝐴 → (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
2827uneq2d 4164 . . . 4 (ran 𝑔𝐴 → (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
2922, 28sylan9eq 2793 . . 3 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
3012, 29eqtr4id 2792 . 2 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → dom 𝐻 = ( 𝐷 ∪ (𝐴 𝐷)))
31 undif 4482 . . 3 ( 𝐷𝐴 ↔ ( 𝐷 ∪ (𝐴 𝐷)) = 𝐴)
3217, 31mpbi 229 . 2 ( 𝐷 ∪ (𝐴 𝐷)) = 𝐴
3330, 32eqtrdi 2789 1 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → dom 𝐻 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  Vcvv 3475  cdif 3946  cun 3947  cin 3948  wss 3949   cuni 4909  ccnv 5676  dom cdm 5677  ran crn 5678  cres 5679  cima 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690
This theorem is referenced by:  sbthlem9  9091
  Copyright terms: Public domain W3C validator