MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem5 Structured version   Visualization version   GIF version

Theorem sbthlem5 9055
Description: Lemma for sbth 9061. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlem5 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → dom 𝐻 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem5
StepHypRef Expression
1 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
21dmeqi 5868 . . . 4 dom 𝐻 = dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3 dmun 5874 . . . . 5 dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷)))
4 dmres 5983 . . . . . 6 dom (𝑓 𝐷) = ( 𝐷 ∩ dom 𝑓)
5 dmres 5983 . . . . . . 7 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ dom 𝑔)
6 df-rn 5649 . . . . . . . . 9 ran 𝑔 = dom 𝑔
76eqcomi 2738 . . . . . . . 8 dom 𝑔 = ran 𝑔
87ineq2i 4180 . . . . . . 7 ((𝐴 𝐷) ∩ dom 𝑔) = ((𝐴 𝐷) ∩ ran 𝑔)
95, 8eqtri 2752 . . . . . 6 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ ran 𝑔)
104, 9uneq12i 4129 . . . . 5 (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷))) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
113, 10eqtri 2752 . . . 4 dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
122, 11eqtri 2752 . . 3 dom 𝐻 = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
13 sbthlem.1 . . . . . . . . 9 𝐴 ∈ V
14 sbthlem.2 . . . . . . . . 9 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
1513, 14sbthlem1 9051 . . . . . . . 8 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
16 difss 4099 . . . . . . . 8 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴
1715, 16sstri 3956 . . . . . . 7 𝐷𝐴
18 sseq2 3973 . . . . . . 7 (dom 𝑓 = 𝐴 → ( 𝐷 ⊆ dom 𝑓 𝐷𝐴))
1917, 18mpbiri 258 . . . . . 6 (dom 𝑓 = 𝐴 𝐷 ⊆ dom 𝑓)
20 dfss 3933 . . . . . 6 ( 𝐷 ⊆ dom 𝑓 𝐷 = ( 𝐷 ∩ dom 𝑓))
2119, 20sylib 218 . . . . 5 (dom 𝑓 = 𝐴 𝐷 = ( 𝐷 ∩ dom 𝑓))
2221uneq1d 4130 . . . 4 (dom 𝑓 = 𝐴 → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)))
2313, 14sbthlem3 9053 . . . . . . 7 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
24 imassrn 6042 . . . . . . 7 (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔
2523, 24eqsstrrdi 3992 . . . . . 6 (ran 𝑔𝐴 → (𝐴 𝐷) ⊆ ran 𝑔)
26 dfss 3933 . . . . . 6 ((𝐴 𝐷) ⊆ ran 𝑔 ↔ (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
2725, 26sylib 218 . . . . 5 (ran 𝑔𝐴 → (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
2827uneq2d 4131 . . . 4 (ran 𝑔𝐴 → (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
2922, 28sylan9eq 2784 . . 3 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
3012, 29eqtr4id 2783 . 2 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → dom 𝐻 = ( 𝐷 ∪ (𝐴 𝐷)))
31 undif 4445 . . 3 ( 𝐷𝐴 ↔ ( 𝐷 ∪ (𝐴 𝐷)) = 𝐴)
3217, 31mpbi 230 . 2 ( 𝐷 ∪ (𝐴 𝐷)) = 𝐴
3330, 32eqtrdi 2780 1 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → dom 𝐻 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914   cuni 4871  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  sbthlem9  9059
  Copyright terms: Public domain W3C validator