MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem5 Structured version   Visualization version   GIF version

Theorem sbthlem5 8617
Description: Lemma for sbth 8623. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlem5 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → dom 𝐻 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem5
StepHypRef Expression
1 sbthlem.1 . . . . . . . . 9 𝐴 ∈ V
2 sbthlem.2 . . . . . . . . 9 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
31, 2sbthlem1 8613 . . . . . . . 8 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
4 difss 4092 . . . . . . . 8 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴
53, 4sstri 3960 . . . . . . 7 𝐷𝐴
6 sseq2 3977 . . . . . . 7 (dom 𝑓 = 𝐴 → ( 𝐷 ⊆ dom 𝑓 𝐷𝐴))
75, 6mpbiri 261 . . . . . 6 (dom 𝑓 = 𝐴 𝐷 ⊆ dom 𝑓)
8 dfss 3936 . . . . . 6 ( 𝐷 ⊆ dom 𝑓 𝐷 = ( 𝐷 ∩ dom 𝑓))
97, 8sylib 221 . . . . 5 (dom 𝑓 = 𝐴 𝐷 = ( 𝐷 ∩ dom 𝑓))
109uneq1d 4122 . . . 4 (dom 𝑓 = 𝐴 → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)))
111, 2sbthlem3 8615 . . . . . . 7 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
12 imassrn 5923 . . . . . . 7 (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔
1311, 12eqsstrrdi 4006 . . . . . 6 (ran 𝑔𝐴 → (𝐴 𝐷) ⊆ ran 𝑔)
14 dfss 3936 . . . . . 6 ((𝐴 𝐷) ⊆ ran 𝑔 ↔ (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
1513, 14sylib 221 . . . . 5 (ran 𝑔𝐴 → (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
1615uneq2d 4123 . . . 4 (ran 𝑔𝐴 → (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
1710, 16sylan9eq 2879 . . 3 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
18 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
1918dmeqi 5756 . . . 4 dom 𝐻 = dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
20 dmun 5762 . . . . 5 dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷)))
21 dmres 5858 . . . . . 6 dom (𝑓 𝐷) = ( 𝐷 ∩ dom 𝑓)
22 dmres 5858 . . . . . . 7 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ dom 𝑔)
23 df-rn 5549 . . . . . . . . 9 ran 𝑔 = dom 𝑔
2423eqcomi 2833 . . . . . . . 8 dom 𝑔 = ran 𝑔
2524ineq2i 4169 . . . . . . 7 ((𝐴 𝐷) ∩ dom 𝑔) = ((𝐴 𝐷) ∩ ran 𝑔)
2622, 25eqtri 2847 . . . . . 6 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ ran 𝑔)
2721, 26uneq12i 4121 . . . . 5 (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷))) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
2820, 27eqtri 2847 . . . 4 dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
2919, 28eqtri 2847 . . 3 dom 𝐻 = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
3017, 29syl6reqr 2878 . 2 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → dom 𝐻 = ( 𝐷 ∪ (𝐴 𝐷)))
31 undif 4411 . . 3 ( 𝐷𝐴 ↔ ( 𝐷 ∪ (𝐴 𝐷)) = 𝐴)
325, 31mpbi 233 . 2 ( 𝐷 ∪ (𝐴 𝐷)) = 𝐴
3330, 32syl6eq 2875 1 ((dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴) → dom 𝐻 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  {cab 2802  Vcvv 3479  cdif 3915  cun 3916  cin 3917  wss 3918   cuni 4821  ccnv 5537  dom cdm 5538  ran crn 5539  cres 5540  cima 5541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5186  ax-nul 5193  ax-pr 5313
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-br 5050  df-opab 5112  df-xp 5544  df-cnv 5546  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551
This theorem is referenced by:  sbthlem9  8621
  Copyright terms: Public domain W3C validator