MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbth Structured version   Visualization version   GIF version

Theorem sbth 8833
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here. The theorem can also be proved from the axiom of choice and the linear order of the cardinal numbers, but our development does not provide the linear order of cardinal numbers until much later and in ways that depend on Schroeder-Bernstein.

The main proof consists of lemmas sbthlem1 8823 through sbthlem10 8832; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 8832. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. In the Intuitionistic Logic Explorer (ILE) the Schroeder-Bernstein Theorem has been proven equivalent to the law of the excluded middle (LEM), and in ILE the LEM is not accepted as necessarily true; see https://us.metamath.org/ileuni/exmidsbth.html 8832. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.)

Assertion
Ref Expression
sbth ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)

Proof of Theorem sbth
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8697 . . . 4 Rel ≼
21brrelex1i 5634 . . 3 (𝐴𝐵𝐴 ∈ V)
31brrelex1i 5634 . . 3 (𝐵𝐴𝐵 ∈ V)
4 breq1 5073 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
5 breq2 5074 . . . . . 6 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
64, 5anbi12d 630 . . . . 5 (𝑧 = 𝐴 → ((𝑧𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝐴)))
7 breq1 5073 . . . . 5 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
86, 7imbi12d 344 . . . 4 (𝑧 = 𝐴 → (((𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
9 breq2 5074 . . . . . 6 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
10 breq1 5073 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐴𝐵𝐴))
119, 10anbi12d 630 . . . . 5 (𝑤 = 𝐵 → ((𝐴𝑤𝑤𝐴) ↔ (𝐴𝐵𝐵𝐴)))
12 breq2 5074 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
1311, 12imbi12d 344 . . . 4 (𝑤 = 𝐵 → (((𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
14 vex 3426 . . . . 5 𝑧 ∈ V
15 sseq1 3942 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
16 imaeq2 5954 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
1716difeq2d 4053 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑤 ∖ (𝑓𝑦)) = (𝑤 ∖ (𝑓𝑥)))
1817imaeq2d 5958 . . . . . . . 8 (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓𝑥))))
19 difeq2 4047 . . . . . . . 8 (𝑦 = 𝑥 → (𝑧𝑦) = (𝑧𝑥))
2018, 19sseq12d 3950 . . . . . . 7 (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥)))
2115, 20anbi12d 630 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦)) ↔ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))))
2221cbvabv 2812 . . . . 5 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))} = {𝑥 ∣ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))}
23 eqid 2738 . . . . 5 ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}))) = ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))})))
24 vex 3426 . . . . 5 𝑤 ∈ V
2514, 22, 23, 24sbthlem10 8832 . . . 4 ((𝑧𝑤𝑤𝑧) → 𝑧𝑤)
268, 13, 25vtocl2g 3500 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
272, 3, 26syl2an 595 . 2 ((𝐴𝐵𝐵𝐴) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
2827pm2.43i 52 1 ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422  cdif 3880  cun 3881  wss 3883   cuni 4836   class class class wbr 5070  ccnv 5579  cres 5582  cima 5583  cen 8688  cdom 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-en 8692  df-dom 8693
This theorem is referenced by:  sbthb  8834  sdomnsym  8838  domtriord  8859  xpen  8876  limenpsi  8888  php  8897  onomeneq  8943  unbnn  9000  infxpenlem  9700  fseqen  9714  infpwfien  9749  inffien  9750  alephdom  9768  mappwen  9799  infdjuabs  9893  infunabs  9894  infdju  9895  infdif  9896  infxpabs  9899  infmap2  9905  gchaleph  10358  gchhar  10366  inttsk  10461  inar1  10462  znnen  15849  qnnen  15850  rpnnen  15864  rexpen  15865  mreexfidimd  17276  acsinfdimd  18191  fislw  19145  opnreen  23900  ovolctb2  24561  vitali  24682  aannenlem3  25395  basellem4  26138  lgsqrlem4  26402  upgrex  27365  iccioo01  35425  ctbssinf  35504  phpreu  35688  poimirlem26  35730  pellexlem4  40570  pellexlem5  40571  idomsubgmo  40939
  Copyright terms: Public domain W3C validator