Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbth | Structured version Visualization version GIF version |
Description: Schroeder-Bernstein
Theorem. Theorem 18 of [Suppes] p. 95. This
theorem states that if set 𝐴 is smaller (has lower cardinality)
than
𝐵 and vice-versa, then 𝐴 and
𝐵
are equinumerous (have the
same cardinality). The interesting thing is that this can be proved
without invoking the Axiom of Choice, as we do here. The theorem can
also be proved from the axiom of choice and the linear order of the
cardinal numbers, but our development does not provide the linear order
of cardinal numbers until much later and in ways that depend on
Schroeder-Bernstein.
The main proof consists of lemmas sbthlem1 8823 through sbthlem10 8832; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 8832. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. In the Intuitionistic Logic Explorer (ILE) the Schroeder-Bernstein Theorem has been proven equivalent to the law of the excluded middle (LEM), and in ILE the LEM is not accepted as necessarily true; see https://us.metamath.org/ileuni/exmidsbth.html 8832. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.) |
Ref | Expression |
---|---|
sbth | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8697 | . . . 4 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 5634 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
3 | 1 | brrelex1i 5634 | . . 3 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
4 | breq1 5073 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑧 ≼ 𝑤 ↔ 𝐴 ≼ 𝑤)) | |
5 | breq2 5074 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑤 ≼ 𝑧 ↔ 𝑤 ≼ 𝐴)) | |
6 | 4, 5 | anbi12d 630 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) ↔ (𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴))) |
7 | breq1 5073 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 ≈ 𝑤 ↔ 𝐴 ≈ 𝑤)) | |
8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑧 = 𝐴 → (((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) ↔ ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤))) |
9 | breq2 5074 | . . . . . 6 ⊢ (𝑤 = 𝐵 → (𝐴 ≼ 𝑤 ↔ 𝐴 ≼ 𝐵)) | |
10 | breq1 5073 | . . . . . 6 ⊢ (𝑤 = 𝐵 → (𝑤 ≼ 𝐴 ↔ 𝐵 ≼ 𝐴)) | |
11 | 9, 10 | anbi12d 630 | . . . . 5 ⊢ (𝑤 = 𝐵 → ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) ↔ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴))) |
12 | breq2 5074 | . . . . 5 ⊢ (𝑤 = 𝐵 → (𝐴 ≈ 𝑤 ↔ 𝐴 ≈ 𝐵)) | |
13 | 11, 12 | imbi12d 344 | . . . 4 ⊢ (𝑤 = 𝐵 → (((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤) ↔ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵))) |
14 | vex 3426 | . . . . 5 ⊢ 𝑧 ∈ V | |
15 | sseq1 3942 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ⊆ 𝑧 ↔ 𝑥 ⊆ 𝑧)) | |
16 | imaeq2 5954 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑓 “ 𝑦) = (𝑓 “ 𝑥)) | |
17 | 16 | difeq2d 4053 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑤 ∖ (𝑓 “ 𝑦)) = (𝑤 ∖ (𝑓 “ 𝑥))) |
18 | 17 | imaeq2d 5958 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥)))) |
19 | difeq2 4047 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑧 ∖ 𝑦) = (𝑧 ∖ 𝑥)) | |
20 | 18, 19 | sseq12d 3950 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))) |
21 | 15, 20 | anbi12d 630 | . . . . . 6 ⊢ (𝑦 = 𝑥 → ((𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦)) ↔ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥)))) |
22 | 21 | cbvabv 2812 | . . . . 5 ⊢ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))} = {𝑥 ∣ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))} |
23 | eqid 2738 | . . . . 5 ⊢ ((𝑓 ↾ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) = ((𝑓 ↾ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) | |
24 | vex 3426 | . . . . 5 ⊢ 𝑤 ∈ V | |
25 | 14, 22, 23, 24 | sbthlem10 8832 | . . . 4 ⊢ ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) |
26 | 8, 13, 25 | vtocl2g 3500 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
27 | 2, 3, 26 | syl2an 595 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
28 | 27 | pm2.43i 52 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 ◡ccnv 5579 ↾ cres 5582 “ cima 5583 ≈ cen 8688 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-en 8692 df-dom 8693 |
This theorem is referenced by: sbthb 8834 sdomnsym 8838 domtriord 8859 xpen 8876 limenpsi 8888 php 8897 onomeneq 8943 unbnn 9000 infxpenlem 9700 fseqen 9714 infpwfien 9749 inffien 9750 alephdom 9768 mappwen 9799 infdjuabs 9893 infunabs 9894 infdju 9895 infdif 9896 infxpabs 9899 infmap2 9905 gchaleph 10358 gchhar 10366 inttsk 10461 inar1 10462 znnen 15849 qnnen 15850 rpnnen 15864 rexpen 15865 mreexfidimd 17276 acsinfdimd 18191 fislw 19145 opnreen 23900 ovolctb2 24561 vitali 24682 aannenlem3 25395 basellem4 26138 lgsqrlem4 26402 upgrex 27365 iccioo01 35425 ctbssinf 35504 phpreu 35688 poimirlem26 35730 pellexlem4 40570 pellexlem5 40571 idomsubgmo 40939 |
Copyright terms: Public domain | W3C validator |