MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbth Structured version   Visualization version   GIF version

Theorem sbth 9163
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here. The theorem can also be proved from the axiom of choice and the linear order of the cardinal numbers, but our development does not provide the linear order of cardinal numbers until much later and in ways that depend on Schroeder-Bernstein.

The main proof consists of lemmas sbthlem1 9153 through sbthlem10 9162; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 9162. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. In the Intuitionistic Logic Explorer (ILE) the Schroeder-Bernstein Theorem has been proven equivalent to the law of the excluded middle (LEM), and in ILE the LEM is not accepted as necessarily true; see https://us.metamath.org/ileuni/exmidsbth.html 9162. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.)

Assertion
Ref Expression
sbth ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)

Proof of Theorem sbth
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 9013 . . . 4 Rel ≼
21brrelex1i 5758 . . 3 (𝐴𝐵𝐴 ∈ V)
31brrelex1i 5758 . . 3 (𝐵𝐴𝐵 ∈ V)
4 breq1 5171 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
5 breq2 5172 . . . . . 6 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
64, 5anbi12d 631 . . . . 5 (𝑧 = 𝐴 → ((𝑧𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝐴)))
7 breq1 5171 . . . . 5 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
86, 7imbi12d 344 . . . 4 (𝑧 = 𝐴 → (((𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
9 breq2 5172 . . . . . 6 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
10 breq1 5171 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐴𝐵𝐴))
119, 10anbi12d 631 . . . . 5 (𝑤 = 𝐵 → ((𝐴𝑤𝑤𝐴) ↔ (𝐴𝐵𝐵𝐴)))
12 breq2 5172 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
1311, 12imbi12d 344 . . . 4 (𝑤 = 𝐵 → (((𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
14 vex 3493 . . . . 5 𝑧 ∈ V
15 sseq1 4035 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
16 imaeq2 6089 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
1716difeq2d 4150 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑤 ∖ (𝑓𝑦)) = (𝑤 ∖ (𝑓𝑥)))
1817imaeq2d 6093 . . . . . . . 8 (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓𝑥))))
19 difeq2 4144 . . . . . . . 8 (𝑦 = 𝑥 → (𝑧𝑦) = (𝑧𝑥))
2018, 19sseq12d 4043 . . . . . . 7 (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥)))
2115, 20anbi12d 631 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦)) ↔ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))))
2221cbvabv 2815 . . . . 5 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))} = {𝑥 ∣ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))}
23 eqid 2740 . . . . 5 ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}))) = ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))})))
24 vex 3493 . . . . 5 𝑤 ∈ V
2514, 22, 23, 24sbthlem10 9162 . . . 4 ((𝑧𝑤𝑤𝑧) → 𝑧𝑤)
268, 13, 25vtocl2g 3587 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
272, 3, 26syl2an 595 . 2 ((𝐴𝐵𝐵𝐴) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
2827pm2.43i 52 1 ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3489  cdif 3974  cun 3975  wss 3977   cuni 4933   class class class wbr 5168  ccnv 5701  cres 5704  cima 5705  cen 9004  cdom 9005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5319  ax-nul 5326  ax-pow 5385  ax-pr 5449  ax-un 7774
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3445  df-v 3491  df-dif 3980  df-un 3982  df-in 3984  df-ss 3994  df-nul 4354  df-if 4550  df-pw 4625  df-sn 4650  df-pr 4652  df-op 4656  df-uni 4934  df-br 5169  df-opab 5231  df-id 5595  df-xp 5708  df-rel 5709  df-cnv 5710  df-co 5711  df-dm 5712  df-rn 5713  df-res 5714  df-ima 5715  df-fun 6579  df-fn 6580  df-f 6581  df-f1 6582  df-fo 6583  df-f1o 6584  df-en 9008  df-dom 9009
This theorem is referenced by:  sbthb  9164  sdomnsym  9168  domtriord  9193  xpen  9210  limenpsi  9222  phpOLD  9289  onomeneqOLD  9296  unbnn  9364  infxpenlem  10086  fseqen  10100  infpwfien  10135  inffien  10136  alephdom  10154  mappwen  10185  infdjuabs  10278  infunabs  10279  infdju  10280  infdif  10281  infxpabs  10284  infmap2  10290  gchaleph  10744  gchhar  10752  inttsk  10847  inar1  10848  znnen  16278  qnnen  16279  rpnnen  16293  rexpen  16294  mreexfidimd  17729  acsinfdimd  18649  fislw  19688  opnreen  24893  ovolctb2  25567  vitali  25688  aannenlem3  26411  basellem4  27166  lgsqrlem4  27432  upgrex  29148  iccioo01  37313  ctbssinf  37392  phpreu  37594  poimirlem26  37636  pellexlem4  42817  pellexlem5  42818  idomsubgmo  43183
  Copyright terms: Public domain W3C validator