MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbth Structured version   Visualization version   GIF version

Theorem sbth 9078
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here. The theorem can also be proved from the axiom of choice and the linear order of the cardinal numbers, but our development does not provide the linear order of cardinal numbers until much later and in ways that depend on Schroeder-Bernstein.

The main proof consists of lemmas sbthlem1 9068 through sbthlem10 9077; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 9077. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. In the Intuitionistic Logic Explorer (ILE) the Schroeder-Bernstein Theorem has been proven equivalent to the law of the excluded middle (LEM), and in ILE the LEM is not accepted as necessarily true; see https://us.metamath.org/ileuni/exmidsbth.html 9077. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.)

Assertion
Ref Expression
sbth ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)

Proof of Theorem sbth
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8936 . . . 4 Rel ≼
21brrelex1i 5702 . . 3 (𝐴𝐵𝐴 ∈ V)
31brrelex1i 5702 . . 3 (𝐵𝐴𝐵 ∈ V)
4 breq1 5118 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
5 breq2 5119 . . . . . 6 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
64, 5anbi12d 632 . . . . 5 (𝑧 = 𝐴 → ((𝑧𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝐴)))
7 breq1 5118 . . . . 5 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
86, 7imbi12d 344 . . . 4 (𝑧 = 𝐴 → (((𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
9 breq2 5119 . . . . . 6 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
10 breq1 5118 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐴𝐵𝐴))
119, 10anbi12d 632 . . . . 5 (𝑤 = 𝐵 → ((𝐴𝑤𝑤𝐴) ↔ (𝐴𝐵𝐵𝐴)))
12 breq2 5119 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
1311, 12imbi12d 344 . . . 4 (𝑤 = 𝐵 → (((𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
14 vex 3459 . . . . 5 𝑧 ∈ V
15 sseq1 3980 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
16 imaeq2 6035 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
1716difeq2d 4097 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑤 ∖ (𝑓𝑦)) = (𝑤 ∖ (𝑓𝑥)))
1817imaeq2d 6039 . . . . . . . 8 (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓𝑥))))
19 difeq2 4091 . . . . . . . 8 (𝑦 = 𝑥 → (𝑧𝑦) = (𝑧𝑥))
2018, 19sseq12d 3988 . . . . . . 7 (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥)))
2115, 20anbi12d 632 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦)) ↔ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))))
2221cbvabv 2800 . . . . 5 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))} = {𝑥 ∣ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))}
23 eqid 2730 . . . . 5 ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}))) = ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))})))
24 vex 3459 . . . . 5 𝑤 ∈ V
2514, 22, 23, 24sbthlem10 9077 . . . 4 ((𝑧𝑤𝑤𝑧) → 𝑧𝑤)
268, 13, 25vtocl2g 3549 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
272, 3, 26syl2an 596 . 2 ((𝐴𝐵𝐵𝐴) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
2827pm2.43i 52 1 ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  Vcvv 3455  cdif 3919  cun 3920  wss 3922   cuni 4879   class class class wbr 5115  ccnv 5645  cres 5648  cima 5649  cen 8927  cdom 8928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7719
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-en 8931  df-dom 8932
This theorem is referenced by:  sbthb  9079  sdomnsym  9083  domtriord  9108  xpen  9125  limenpsi  9137  onomeneqOLD  9203  unbnn  9269  infxpenlem  9992  fseqen  10006  infpwfien  10041  inffien  10042  alephdom  10060  mappwen  10091  infdjuabs  10184  infunabs  10185  infdju  10186  infdif  10187  infxpabs  10190  infmap2  10196  gchaleph  10650  gchhar  10658  inttsk  10753  inar1  10754  znnen  16206  qnnen  16207  rpnnen  16221  rexpen  16222  mreexfidimd  17637  acsinfdimd  18543  fislw  19581  opnreen  24746  ovolctb2  25420  vitali  25541  aannenlem3  26265  basellem4  27021  lgsqrlem4  27287  upgrex  29046  iccioo01  37331  ctbssinf  37410  phpreu  37614  poimirlem26  37656  pellexlem4  42834  pellexlem5  42835  idomsubgmo  43196
  Copyright terms: Public domain W3C validator