| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbth | Structured version Visualization version GIF version | ||
| Description: Schroeder-Bernstein
Theorem. Theorem 18 of [Suppes] p. 95. This
theorem states that if set 𝐴 is smaller (has lower cardinality)
than
𝐵 and vice-versa, then 𝐴 and
𝐵
are equinumerous (have the
same cardinality). The interesting thing is that this can be proved
without invoking the Axiom of Choice, as we do here. The theorem can
also be proved from the axiom of choice and the linear order of the
cardinal numbers, but our development does not provide the linear order
of cardinal numbers until much later and in ways that depend on
Schroeder-Bernstein.
The main proof consists of lemmas sbthlem1 9028 through sbthlem10 9037; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 9037. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. In the Intuitionistic Logic Explorer (ILE) the Schroeder-Bernstein Theorem has been proven equivalent to the law of the excluded middle (LEM), and in ILE the LEM is not accepted as necessarily true; see https://us.metamath.org/ileuni/exmidsbth.html 9037. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.) |
| Ref | Expression |
|---|---|
| sbth | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8901 | . . . 4 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 5687 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 3 | 1 | brrelex1i 5687 | . . 3 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
| 4 | breq1 5105 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑧 ≼ 𝑤 ↔ 𝐴 ≼ 𝑤)) | |
| 5 | breq2 5106 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑤 ≼ 𝑧 ↔ 𝑤 ≼ 𝐴)) | |
| 6 | 4, 5 | anbi12d 632 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) ↔ (𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴))) |
| 7 | breq1 5105 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 ≈ 𝑤 ↔ 𝐴 ≈ 𝑤)) | |
| 8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑧 = 𝐴 → (((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) ↔ ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤))) |
| 9 | breq2 5106 | . . . . . 6 ⊢ (𝑤 = 𝐵 → (𝐴 ≼ 𝑤 ↔ 𝐴 ≼ 𝐵)) | |
| 10 | breq1 5105 | . . . . . 6 ⊢ (𝑤 = 𝐵 → (𝑤 ≼ 𝐴 ↔ 𝐵 ≼ 𝐴)) | |
| 11 | 9, 10 | anbi12d 632 | . . . . 5 ⊢ (𝑤 = 𝐵 → ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) ↔ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴))) |
| 12 | breq2 5106 | . . . . 5 ⊢ (𝑤 = 𝐵 → (𝐴 ≈ 𝑤 ↔ 𝐴 ≈ 𝐵)) | |
| 13 | 11, 12 | imbi12d 344 | . . . 4 ⊢ (𝑤 = 𝐵 → (((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤) ↔ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵))) |
| 14 | vex 3448 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 15 | sseq1 3969 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ⊆ 𝑧 ↔ 𝑥 ⊆ 𝑧)) | |
| 16 | imaeq2 6016 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑓 “ 𝑦) = (𝑓 “ 𝑥)) | |
| 17 | 16 | difeq2d 4085 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑤 ∖ (𝑓 “ 𝑦)) = (𝑤 ∖ (𝑓 “ 𝑥))) |
| 18 | 17 | imaeq2d 6020 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥)))) |
| 19 | difeq2 4079 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑧 ∖ 𝑦) = (𝑧 ∖ 𝑥)) | |
| 20 | 18, 19 | sseq12d 3977 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))) |
| 21 | 15, 20 | anbi12d 632 | . . . . . 6 ⊢ (𝑦 = 𝑥 → ((𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦)) ↔ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥)))) |
| 22 | 21 | cbvabv 2799 | . . . . 5 ⊢ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))} = {𝑥 ∣ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))} |
| 23 | eqid 2729 | . . . . 5 ⊢ ((𝑓 ↾ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) = ((𝑓 ↾ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) | |
| 24 | vex 3448 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 25 | 14, 22, 23, 24 | sbthlem10 9037 | . . . 4 ⊢ ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) |
| 26 | 8, 13, 25 | vtocl2g 3537 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
| 27 | 2, 3, 26 | syl2an 596 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
| 28 | 27 | pm2.43i 52 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3444 ∖ cdif 3908 ∪ cun 3909 ⊆ wss 3911 ∪ cuni 4867 class class class wbr 5102 ◡ccnv 5630 ↾ cres 5633 “ cima 5634 ≈ cen 8892 ≼ cdom 8893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-en 8896 df-dom 8897 |
| This theorem is referenced by: sbthb 9039 sdomnsym 9043 domtriord 9064 xpen 9081 limenpsi 9093 unbnn 9219 infxpenlem 9942 fseqen 9956 infpwfien 9991 inffien 9992 alephdom 10010 mappwen 10041 infdjuabs 10134 infunabs 10135 infdju 10136 infdif 10137 infxpabs 10140 infmap2 10146 gchaleph 10600 gchhar 10608 inttsk 10703 inar1 10704 znnen 16156 qnnen 16157 rpnnen 16171 rexpen 16172 mreexfidimd 17587 acsinfdimd 18493 fislw 19531 opnreen 24696 ovolctb2 25369 vitali 25490 aannenlem3 26214 basellem4 26970 lgsqrlem4 27236 upgrex 28995 iccioo01 37288 ctbssinf 37367 phpreu 37571 poimirlem26 37613 pellexlem4 42793 pellexlem5 42794 idomsubgmo 43155 |
| Copyright terms: Public domain | W3C validator |