MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbth Structured version   Visualization version   GIF version

Theorem sbth 9010
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here. The theorem can also be proved from the axiom of choice and the linear order of the cardinal numbers, but our development does not provide the linear order of cardinal numbers until much later and in ways that depend on Schroeder-Bernstein.

The main proof consists of lemmas sbthlem1 9000 through sbthlem10 9009; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 9009. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. In the Intuitionistic Logic Explorer (ILE) the Schroeder-Bernstein Theorem has been proven equivalent to the law of the excluded middle (LEM), and in ILE the LEM is not accepted as necessarily true; see https://us.metamath.org/ileuni/exmidsbth.html 9009. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.)

Assertion
Ref Expression
sbth ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)

Proof of Theorem sbth
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8875 . . . 4 Rel ≼
21brrelex1i 5670 . . 3 (𝐴𝐵𝐴 ∈ V)
31brrelex1i 5670 . . 3 (𝐵𝐴𝐵 ∈ V)
4 breq1 5092 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
5 breq2 5093 . . . . . 6 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
64, 5anbi12d 632 . . . . 5 (𝑧 = 𝐴 → ((𝑧𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝐴)))
7 breq1 5092 . . . . 5 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
86, 7imbi12d 344 . . . 4 (𝑧 = 𝐴 → (((𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
9 breq2 5093 . . . . . 6 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
10 breq1 5092 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐴𝐵𝐴))
119, 10anbi12d 632 . . . . 5 (𝑤 = 𝐵 → ((𝐴𝑤𝑤𝐴) ↔ (𝐴𝐵𝐵𝐴)))
12 breq2 5093 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
1311, 12imbi12d 344 . . . 4 (𝑤 = 𝐵 → (((𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
14 vex 3440 . . . . 5 𝑧 ∈ V
15 sseq1 3955 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
16 imaeq2 6004 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
1716difeq2d 4073 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑤 ∖ (𝑓𝑦)) = (𝑤 ∖ (𝑓𝑥)))
1817imaeq2d 6008 . . . . . . . 8 (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓𝑥))))
19 difeq2 4067 . . . . . . . 8 (𝑦 = 𝑥 → (𝑧𝑦) = (𝑧𝑥))
2018, 19sseq12d 3963 . . . . . . 7 (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥)))
2115, 20anbi12d 632 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦)) ↔ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))))
2221cbvabv 2801 . . . . 5 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))} = {𝑥 ∣ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))}
23 eqid 2731 . . . . 5 ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}))) = ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))})))
24 vex 3440 . . . . 5 𝑤 ∈ V
2514, 22, 23, 24sbthlem10 9009 . . . 4 ((𝑧𝑤𝑤𝑧) → 𝑧𝑤)
268, 13, 25vtocl2g 3525 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
272, 3, 26syl2an 596 . 2 ((𝐴𝐵𝐵𝐴) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
2827pm2.43i 52 1 ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  cdif 3894  cun 3895  wss 3897   cuni 4856   class class class wbr 5089  ccnv 5613  cres 5616  cima 5617  cen 8866  cdom 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-en 8870  df-dom 8871
This theorem is referenced by:  sbthb  9011  sdomnsym  9015  domtriord  9036  xpen  9053  limenpsi  9065  unbnn  9180  infxpenlem  9904  fseqen  9918  infpwfien  9953  inffien  9954  alephdom  9972  mappwen  10003  infdjuabs  10096  infunabs  10097  infdju  10098  infdif  10099  infxpabs  10102  infmap2  10108  gchaleph  10562  gchhar  10570  inttsk  10665  inar1  10666  znnen  16121  qnnen  16122  rpnnen  16136  rexpen  16137  mreexfidimd  17556  acsinfdimd  18464  fislw  19537  opnreen  24747  ovolctb2  25420  vitali  25541  aannenlem3  26265  basellem4  27021  lgsqrlem4  27287  upgrex  29070  iccioo01  37371  ctbssinf  37450  phpreu  37654  poimirlem26  37696  pellexlem4  42935  pellexlem5  42936  idomsubgmo  43296
  Copyright terms: Public domain W3C validator