MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbth Structured version   Visualization version   GIF version

Theorem sbth 9153
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here. The theorem can also be proved from the axiom of choice and the linear order of the cardinal numbers, but our development does not provide the linear order of cardinal numbers until much later and in ways that depend on Schroeder-Bernstein.

The main proof consists of lemmas sbthlem1 9143 through sbthlem10 9152; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 9152. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. In the Intuitionistic Logic Explorer (ILE) the Schroeder-Bernstein Theorem has been proven equivalent to the law of the excluded middle (LEM), and in ILE the LEM is not accepted as necessarily true; see https://us.metamath.org/ileuni/exmidsbth.html 9152. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.)

Assertion
Ref Expression
sbth ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)

Proof of Theorem sbth
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 9003 . . . 4 Rel ≼
21brrelex1i 5751 . . 3 (𝐴𝐵𝐴 ∈ V)
31brrelex1i 5751 . . 3 (𝐵𝐴𝐵 ∈ V)
4 breq1 5169 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
5 breq2 5170 . . . . . 6 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
64, 5anbi12d 631 . . . . 5 (𝑧 = 𝐴 → ((𝑧𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝐴)))
7 breq1 5169 . . . . 5 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
86, 7imbi12d 344 . . . 4 (𝑧 = 𝐴 → (((𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
9 breq2 5170 . . . . . 6 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
10 breq1 5169 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐴𝐵𝐴))
119, 10anbi12d 631 . . . . 5 (𝑤 = 𝐵 → ((𝐴𝑤𝑤𝐴) ↔ (𝐴𝐵𝐵𝐴)))
12 breq2 5170 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
1311, 12imbi12d 344 . . . 4 (𝑤 = 𝐵 → (((𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
14 vex 3492 . . . . 5 𝑧 ∈ V
15 sseq1 4034 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
16 imaeq2 6080 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
1716difeq2d 4149 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑤 ∖ (𝑓𝑦)) = (𝑤 ∖ (𝑓𝑥)))
1817imaeq2d 6084 . . . . . . . 8 (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓𝑥))))
19 difeq2 4143 . . . . . . . 8 (𝑦 = 𝑥 → (𝑧𝑦) = (𝑧𝑥))
2018, 19sseq12d 4042 . . . . . . 7 (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥)))
2115, 20anbi12d 631 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦)) ↔ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))))
2221cbvabv 2815 . . . . 5 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))} = {𝑥 ∣ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))}
23 eqid 2740 . . . . 5 ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}))) = ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))})))
24 vex 3492 . . . . 5 𝑤 ∈ V
2514, 22, 23, 24sbthlem10 9152 . . . 4 ((𝑧𝑤𝑤𝑧) → 𝑧𝑤)
268, 13, 25vtocl2g 3586 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
272, 3, 26syl2an 595 . 2 ((𝐴𝐵𝐵𝐴) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
2827pm2.43i 52 1 ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  cdif 3973  cun 3974  wss 3976   cuni 4931   class class class wbr 5166  ccnv 5694  cres 5697  cima 5698  cen 8994  cdom 8995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-en 8998  df-dom 8999
This theorem is referenced by:  sbthb  9154  sdomnsym  9158  domtriord  9183  xpen  9200  limenpsi  9212  phpOLD  9279  onomeneqOLD  9286  unbnn  9354  infxpenlem  10076  fseqen  10090  infpwfien  10125  inffien  10126  alephdom  10144  mappwen  10175  infdjuabs  10268  infunabs  10269  infdju  10270  infdif  10271  infxpabs  10274  infmap2  10280  gchaleph  10734  gchhar  10742  inttsk  10837  inar1  10838  znnen  16254  qnnen  16255  rpnnen  16269  rexpen  16270  mreexfidimd  17702  acsinfdimd  18622  fislw  19661  opnreen  24864  ovolctb2  25538  vitali  25659  aannenlem3  26382  basellem4  27137  lgsqrlem4  27403  upgrex  29119  iccioo01  37286  ctbssinf  37365  phpreu  37557  poimirlem26  37599  pellexlem4  42781  pellexlem5  42782  idomsubgmo  43150
  Copyright terms: Public domain W3C validator