![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbth | Structured version Visualization version GIF version |
Description: Schroeder-Bernstein
Theorem. Theorem 18 of [Suppes] p. 95. This
theorem states that if set 𝐴 is smaller (has lower cardinality)
than
𝐵 and vice-versa, then 𝐴 and
𝐵
are equinumerous (have the
same cardinality). The interesting thing is that this can be proved
without invoking the Axiom of Choice, as we do here. The theorem can
also be proved from the axiom of choice and the linear order of the
cardinal numbers, but our development does not provide the linear order
of cardinal numbers until much later and in ways that depend on
Schroeder-Bernstein.
The main proof consists of lemmas sbthlem1 9083 through sbthlem10 9092; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 9092. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. In the Intuitionistic Logic Explorer (ILE) the Schroeder-Bernstein Theorem has been proven equivalent to the law of the excluded middle (LEM), and in ILE the LEM is not accepted as necessarily true; see https://us.metamath.org/ileuni/exmidsbth.html 9092. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.) |
Ref | Expression |
---|---|
sbth | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8945 | . . . 4 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 5733 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
3 | 1 | brrelex1i 5733 | . . 3 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
4 | breq1 5152 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑧 ≼ 𝑤 ↔ 𝐴 ≼ 𝑤)) | |
5 | breq2 5153 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑤 ≼ 𝑧 ↔ 𝑤 ≼ 𝐴)) | |
6 | 4, 5 | anbi12d 632 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) ↔ (𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴))) |
7 | breq1 5152 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 ≈ 𝑤 ↔ 𝐴 ≈ 𝑤)) | |
8 | 6, 7 | imbi12d 345 | . . . 4 ⊢ (𝑧 = 𝐴 → (((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) ↔ ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤))) |
9 | breq2 5153 | . . . . . 6 ⊢ (𝑤 = 𝐵 → (𝐴 ≼ 𝑤 ↔ 𝐴 ≼ 𝐵)) | |
10 | breq1 5152 | . . . . . 6 ⊢ (𝑤 = 𝐵 → (𝑤 ≼ 𝐴 ↔ 𝐵 ≼ 𝐴)) | |
11 | 9, 10 | anbi12d 632 | . . . . 5 ⊢ (𝑤 = 𝐵 → ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) ↔ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴))) |
12 | breq2 5153 | . . . . 5 ⊢ (𝑤 = 𝐵 → (𝐴 ≈ 𝑤 ↔ 𝐴 ≈ 𝐵)) | |
13 | 11, 12 | imbi12d 345 | . . . 4 ⊢ (𝑤 = 𝐵 → (((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤) ↔ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵))) |
14 | vex 3479 | . . . . 5 ⊢ 𝑧 ∈ V | |
15 | sseq1 4008 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ⊆ 𝑧 ↔ 𝑥 ⊆ 𝑧)) | |
16 | imaeq2 6056 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑓 “ 𝑦) = (𝑓 “ 𝑥)) | |
17 | 16 | difeq2d 4123 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑤 ∖ (𝑓 “ 𝑦)) = (𝑤 ∖ (𝑓 “ 𝑥))) |
18 | 17 | imaeq2d 6060 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥)))) |
19 | difeq2 4117 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑧 ∖ 𝑦) = (𝑧 ∖ 𝑥)) | |
20 | 18, 19 | sseq12d 4016 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))) |
21 | 15, 20 | anbi12d 632 | . . . . . 6 ⊢ (𝑦 = 𝑥 → ((𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦)) ↔ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥)))) |
22 | 21 | cbvabv 2806 | . . . . 5 ⊢ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))} = {𝑥 ∣ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))} |
23 | eqid 2733 | . . . . 5 ⊢ ((𝑓 ↾ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) = ((𝑓 ↾ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) | |
24 | vex 3479 | . . . . 5 ⊢ 𝑤 ∈ V | |
25 | 14, 22, 23, 24 | sbthlem10 9092 | . . . 4 ⊢ ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) |
26 | 8, 13, 25 | vtocl2g 3563 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
27 | 2, 3, 26 | syl2an 597 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
28 | 27 | pm2.43i 52 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 Vcvv 3475 ∖ cdif 3946 ∪ cun 3947 ⊆ wss 3949 ∪ cuni 4909 class class class wbr 5149 ◡ccnv 5676 ↾ cres 5679 “ cima 5680 ≈ cen 8936 ≼ cdom 8937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-en 8940 df-dom 8941 |
This theorem is referenced by: sbthb 9094 sdomnsym 9098 domtriord 9123 xpen 9140 limenpsi 9152 phpOLD 9222 onomeneqOLD 9229 unbnn 9299 infxpenlem 10008 fseqen 10022 infpwfien 10057 inffien 10058 alephdom 10076 mappwen 10107 infdjuabs 10201 infunabs 10202 infdju 10203 infdif 10204 infxpabs 10207 infmap2 10213 gchaleph 10666 gchhar 10674 inttsk 10769 inar1 10770 znnen 16155 qnnen 16156 rpnnen 16170 rexpen 16171 mreexfidimd 17594 acsinfdimd 18511 fislw 19493 opnreen 24347 ovolctb2 25009 vitali 25130 aannenlem3 25843 basellem4 26588 lgsqrlem4 26852 upgrex 28352 iccioo01 36208 ctbssinf 36287 phpreu 36472 poimirlem26 36514 pellexlem4 41570 pellexlem5 41571 idomsubgmo 41940 |
Copyright terms: Public domain | W3C validator |