| Metamath
Proof Explorer Theorem List (p. 92 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30904) |
(30905-32427) |
(32428-49649) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sucdom2OLD 9101 | Obsolete version of sucdom2 9222 as of 4-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) | ||
| Theorem | sbthlem1 9102* | Lemma for sbth 9112. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ ∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) | ||
| Theorem | sbthlem2 9103* | Lemma for sbth 9112. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷) | ||
| Theorem | sbthlem3 9104* | Lemma for sbth 9112. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) | ||
| Theorem | sbthlem4 9105* | Lemma for sbth 9112. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ (((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) | ||
| Theorem | sbthlem5 9106* | Lemma for sbth 9112. (Contributed by NM, 22-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴) → dom 𝐻 = 𝐴) | ||
| Theorem | sbthlem6 9107* | Lemma for sbth 9112. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((ran 𝑓 ⊆ 𝐵 ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) | ||
| Theorem | sbthlem7 9108* | Lemma for sbth 9112. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((Fun 𝑓 ∧ Fun ◡𝑔) → Fun 𝐻) | ||
| Theorem | sbthlem8 9109* | Lemma for sbth 9112. (Contributed by NM, 27-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((Fun ◡𝑓 ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → Fun ◡𝐻) | ||
| Theorem | sbthlem9 9110* | Lemma for sbth 9112. (Contributed by NM, 28-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐻:𝐴–1-1-onto→𝐵) | ||
| Theorem | sbthlem10 9111* | Lemma for sbth 9112. (Contributed by NM, 28-Mar-1998.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
| Theorem | sbth 9112 |
Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This
theorem states that if set 𝐴 is smaller (has lower cardinality)
than
𝐵 and vice-versa, then 𝐴 and
𝐵
are equinumerous (have the
same cardinality). The interesting thing is that this can be proved
without invoking the Axiom of Choice, as we do here. The theorem can
also be proved from the axiom of choice and the linear order of the
cardinal numbers, but our development does not provide the linear order
of cardinal numbers until much later and in ways that depend on
Schroeder-Bernstein.
The main proof consists of lemmas sbthlem1 9102 through sbthlem10 9111; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 9111. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. In the Intuitionistic Logic Explorer (ILE) the Schroeder-Bernstein Theorem has been proven equivalent to the law of the excluded middle (LEM), and in ILE the LEM is not accepted as necessarily true; see https://us.metamath.org/ileuni/exmidsbth.html 9111. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
| Theorem | sbthb 9113 | Schroeder-Bernstein Theorem and its converse. (Contributed by NM, 8-Jun-1998.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ 𝐴 ≈ 𝐵) | ||
| Theorem | sbthcl 9114 | Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.) |
| ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) | ||
| Theorem | dfsdom2 9115 | Alternate definition of strict dominance. Compare Definition 3 of [Suppes] p. 97. (Contributed by NM, 31-Mar-1998.) |
| ⊢ ≺ = ( ≼ ∖ ◡ ≼ ) | ||
| Theorem | brsdom2 9116 | Alternate definition of strict dominance. Definition 3 of [Suppes] p. 97. (Contributed by NM, 27-Jul-2004.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐵 ≼ 𝐴)) | ||
| Theorem | sdomnsym 9117 | Strict dominance is asymmetric. Theorem 21(ii) of [Suppes] p. 97. (Contributed by NM, 8-Jun-1998.) |
| ⊢ (𝐴 ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴) | ||
| Theorem | domnsym 9118 | Theorem 22(i) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) |
| ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | ||
| Theorem | 0domg 9119 | Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5340, ax-un 7734. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) | ||
| Theorem | 0domgOLD 9120 | Obsolete version of 0domg 9119 as of 29-Nov-2024. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ∅ ≼ 𝐴) | ||
| Theorem | dom0 9121 | A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.) Avoid ax-pow 5340, ax-un 7734. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) | ||
| Theorem | dom0OLD 9122 | Obsolete version of dom0 9121 as of 29-Nov-2024. (Contributed by NM, 22-Nov-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ≼ ∅ ↔ 𝐴 = ∅) | ||
| Theorem | 0sdomg 9123 | A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5340, ax-un 7734. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
| Theorem | 0sdomgOLD 9124 | Obsolete version of 0sdomg 9123 as of 29-Nov-2024. (Contributed by NM, 23-Mar-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | ||
| Theorem | 0dom 9125 | Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∅ ≼ 𝐴 | ||
| Theorem | 0sdom 9126 | A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 29-Jul-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) | ||
| Theorem | sdom0 9127 | The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003.) Avoid ax-pow 5340, ax-un 7734. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ ¬ 𝐴 ≺ ∅ | ||
| Theorem | sdom0OLD 9128 | Obsolete version of sdom0 9127 as of 29-Nov-2024. (Contributed by NM, 26-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ 𝐴 ≺ ∅ | ||
| Theorem | sdomdomtr 9129 | Transitivity of strict dominance and dominance. Theorem 22(iii) of [Suppes] p. 97. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | sdomentr 9130 | Transitivity of strict dominance and equinumerosity. Exercise 11 of [Suppes] p. 98. (Contributed by NM, 26-Oct-2003.) |
| ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | domsdomtr 9131 | Transitivity of dominance and strict dominance. Theorem 22(ii) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | ensdomtr 9132 | Transitivity of equinumerosity and strict dominance. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | sdomirr 9133 | Strict dominance is irreflexive. Theorem 21(i) of [Suppes] p. 97. (Contributed by NM, 4-Jun-1998.) |
| ⊢ ¬ 𝐴 ≺ 𝐴 | ||
| Theorem | sdomtr 9134 | Strict dominance is transitive. Theorem 21(iii) of [Suppes] p. 97. (Contributed by NM, 9-Jun-1998.) |
| ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | sdomn2lp 9135 | Strict dominance has no 2-cycle loops. (Contributed by NM, 6-May-2008.) |
| ⊢ ¬ (𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) | ||
| Theorem | enen1 9136 | Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝐶 ↔ 𝐵 ≈ 𝐶)) | ||
| Theorem | enen2 9137 | Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≈ 𝐴 ↔ 𝐶 ≈ 𝐵)) | ||
| Theorem | domen1 9138 | Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐶 ↔ 𝐵 ≼ 𝐶)) | ||
| Theorem | domen2 9139 | Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼ 𝐴 ↔ 𝐶 ≼ 𝐵)) | ||
| Theorem | sdomen1 9140 | Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≺ 𝐶 ↔ 𝐵 ≺ 𝐶)) | ||
| Theorem | sdomen2 9141 | Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≺ 𝐴 ↔ 𝐶 ≺ 𝐵)) | ||
| Theorem | domtriord 9142 | Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | ||
| Theorem | sdomel 9143 | For ordinals, strict dominance implies membership. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≺ 𝐵 → 𝐴 ∈ 𝐵)) | ||
| Theorem | sdomdif 9144 | The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013.) |
| ⊢ (𝐴 ≺ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) | ||
| Theorem | onsdominel 9145 | An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) → 𝐴 ∈ 𝐵) | ||
| Theorem | domunsn 9146 | Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (𝐴 ≺ 𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵) | ||
| Theorem | fodomr 9147* | There exists a mapping from a set onto any (nonempty) set that it dominates. (Contributed by NM, 23-Mar-2006.) |
| ⊢ ((∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴) → ∃𝑓 𝑓:𝐴–onto→𝐵) | ||
| Theorem | pwdom 9148 | Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐴 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵) | ||
| Theorem | canth2 9149 | Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 7364. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ≺ 𝒫 𝐴 | ||
| Theorem | canth2g 9150 | Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) | ||
| Theorem | 2pwuninel 9151 | The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.) |
| ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 | ||
| Theorem | 2pwne 9152 | No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ≠ 𝐴) | ||
| Theorem | disjen 9153 | A stronger form of pwuninel 8279. We can use pwuninel 8279, 2pwuninel 9151 to create one or two sets disjoint from a given set 𝐴, but here we show that in fact such constructions exist for arbitrarily large disjoint extensions, which is to say that for any set 𝐵 we can construct a set 𝑥 that is equinumerous to it and disjoint from 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵)) | ||
| Theorem | disjenex 9154* | Existence version of disjen 9153. (Contributed by Mario Carneiro, 7-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵)) | ||
| Theorem | domss2 9155 | A corollary of disjenex 9154. If 𝐹 is an injection from 𝐴 to 𝐵 then 𝐺 is a right inverse of 𝐹 from 𝐵 to a superset of 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐺 = ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ⇒ ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐺:𝐵–1-1-onto→ran 𝐺 ∧ 𝐴 ⊆ ran 𝐺 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) | ||
| Theorem | domssex2 9156* | A corollary of disjenex 9154. If 𝐹 is an injection from 𝐴 to 𝐵 then there is a right inverse 𝑔 of 𝐹 from 𝐵 to a superset of 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑔(𝑔:𝐵–1-1→V ∧ (𝑔 ∘ 𝐹) = ( I ↾ 𝐴))) | ||
| Theorem | domssex 9157* | Weakening of domssex2 9156 to forget the functions in favor of dominance and equinumerosity. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ (𝐴 ≼ 𝐵 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝐵 ≈ 𝑥)) | ||
| Theorem | xpf1o 9158* | Construct a bijection on a Cartesian product given bijections on the factors. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑌):𝐶–1-1-onto→𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) | ||
| Theorem | xpen 9159 | Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) | ||
| Theorem | mapen 9160 | Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of [Enderton] p. 139. (Contributed by NM, 16-Dec-2003.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ↑m 𝐶) ≈ (𝐵 ↑m 𝐷)) | ||
| Theorem | mapdom1 9161 | Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
| ⊢ (𝐴 ≼ 𝐵 → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) | ||
| Theorem | mapxpen 9162 | Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ↑m 𝐵) ↑m 𝐶) ≈ (𝐴 ↑m (𝐵 × 𝐶))) | ||
| Theorem | xpmapenlem 9163* | Lemma for xpmapen 9164. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 = (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) & ⊢ 𝑅 = (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) & ⊢ 𝑆 = (𝑧 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) ⇒ ⊢ ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴 ↑m 𝐶) × (𝐵 ↑m 𝐶)) | ||
| Theorem | xpmapen 9164 | Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴 ↑m 𝐶) × (𝐵 ↑m 𝐶)) | ||
| Theorem | mapunen 9165 | Equinumerosity law for set exponentiation of a disjoint union. Exercise 4.45 of [Mendelson] p. 255. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐶 ↑m (𝐴 ∪ 𝐵)) ≈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵))) | ||
| Theorem | map2xp 9166 | A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) | ||
| Theorem | mapdom2 9167 | Order-preserving property of set exponentiation. Theorem 6L(d) of [Enderton] p. 149. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) → (𝐶 ↑m 𝐴) ≼ (𝐶 ↑m 𝐵)) | ||
| Theorem | mapdom3 9168 | Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 17-Jul-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) | ||
| Theorem | pwen 9169 | If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of [TakeutiZaring] p. 87. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) | ||
| Theorem | ssenen 9170* | Equinumerosity of equinumerous subsets of a set. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐴 ≈ 𝐵 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶)} ≈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶)}) | ||
| Theorem | limenpsi 9171 | A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ Lim 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) | ||
| Theorem | limensuci 9172 | A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
| ⊢ Lim 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) | ||
| Theorem | limensuc 9173 | A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴) | ||
| Theorem | infensuc 9174 | Any infinite ordinal is equinumerous to its successor. Exercise 7 of [TakeutiZaring] p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 13-Jan-2013.) |
| ⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴) | ||
| Theorem | dif1enlem 9175 | Lemma for rexdif1en 9177 and dif1en 9179. (Contributed by BTernaryTau, 18-Aug-2024.) Generalize to all ordinals and add a sethood requirement to avoid ax-un 7734. (Revised by BTernaryTau, 5-Jan-2025.) |
| ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On) ∧ 𝐹:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) | ||
| Theorem | dif1enlemOLD 9176 | Obsolete version of dif1enlem 9175 as of 5-Jan-2025. (Contributed by BTernaryTau, 18-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ω ∧ 𝐹:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) | ||
| Theorem | rexdif1en 9177* | If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals and avoid ax-un 7734. (Revised by BTernaryTau, 5-Jan-2025.) |
| ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) | ||
| Theorem | rexdif1enOLD 9178* | Obsolete version of rexdif1en 9177 as of 5-Jan-2025. (Contributed by BTernaryTau, 26-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) | ||
| Theorem | dif1en 9179 | If a set 𝐴 is equinumerous to the successor of an ordinal 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) Avoid ax-pow 5340. (Revised by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals. (Revised by BTernaryTau, 6-Jan-2025.) |
| ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
| Theorem | dif1ennn 9180 | If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. See also dif1ennnALT 9288. (Contributed by BTernaryTau, 6-Jan-2025.) |
| ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
| Theorem | dif1enOLD 9181 | Obsolete version of dif1en 9179 as of 6-Jan-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) Avoid ax-pow 5340. (Revised by BTernaryTau, 26-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
| Theorem | findcard 9182* | Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (∀𝑧 ∈ 𝑦 𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard2 9183* | Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.) Avoid ax-pow 5340. (Revised by BTernaryTau, 26-Aug-2024.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard2s 9184* | Variation of findcard2 9183 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard2d 9185* | Deduction version of findcard2 9183. (Contributed by SO, 16-Jul-2018.) |
| ⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝜃 → 𝜏)) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | nnfi 9186 | Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5340. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | ||
| Theorem | pssnn 9187* | A proper subset of a natural number is equinumerous to some smaller number. Lemma 6F of [Enderton] p. 137. (Contributed by NM, 22-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) Avoid ax-pow 5340. (Revised by BTernaryTau, 31-Jul-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) | ||
| Theorem | ssnnfi 9188 | A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
| Theorem | 0finOLD 9189 | Obsolete version of 0fi 9061 as of 13-Jan-2025. (Contributed by FL, 14-Jul-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∅ ∈ Fin | ||
| Theorem | unfi 9190 | The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 16-Nov-2002.) Avoid ax-pow 5340. (Revised by BTernaryTau, 7-Aug-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | ||
| Theorem | unfid 9191 | The union of two finite sets is finite. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ Fin) | ||
| Theorem | ssfi 9192 | A subset of a finite set is finite. Corollary 6G of [Enderton] p. 138. For a shorter proof using ax-pow 5340, see ssfiALT 9193. (Contributed by NM, 24-Jun-1998.) Avoid ax-pow 5340. (Revised by BTernaryTau, 12-Aug-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
| Theorem | ssfiALT 9193 | Shorter proof of ssfi 9192 using ax-pow 5340. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
| Theorem | diffi 9194 | If 𝐴 is finite, (𝐴 ∖ 𝐵) is finite. (Contributed by FL, 3-Aug-2009.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) | ||
| Theorem | cnvfi 9195 | If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014.) Avoid ax-pow 5340. (Revised by BTernaryTau, 9-Sep-2024.) |
| ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | ||
| Theorem | pwssfi 9196 | Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) | ||
| Theorem | fnfi 9197 | A version of fnex 7214 for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | ||
| Theorem | f1oenfi 9198 | If the domain of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1oeng 8990). (Contributed by BTernaryTau, 8-Sep-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1oenfirn 9199 | If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1domfi 9200 | If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 8991). (Contributed by BTernaryTau, 25-Sep-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |