| Metamath
Proof Explorer Theorem List (p. 92 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | f1domfi2 9101 | If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g 8901). (Contributed by BTernaryTau, 24-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | enreffi 9102 | Equinumerosity is reflexive for finite sets, proved without using the Axiom of Power Sets (unlike enrefg 8916). (Contributed by BTernaryTau, 8-Sep-2024.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ≈ 𝐴) | ||
| Theorem | ensymfib 9103 | Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 8934). (Contributed by BTernaryTau, 9-Sep-2024.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | ||
| Theorem | entrfil 9104 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8938). (Contributed by BTernaryTau, 10-Sep-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
| Theorem | enfii 9105 | A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5307. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | ||
| Theorem | enfi 9106 | Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5307, see enfiALT 9107. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5307. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | ||
| Theorem | enfiALT 9107 | Shorter proof of enfi 9106 using ax-pow 5307. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | ||
| Theorem | domfi 9108 | A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | ||
| Theorem | entrfi 9109 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8938). (Contributed by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
| Theorem | entrfir 9110 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8938). (Contributed by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
| Theorem | domtrfil 9111 | Transitivity of dominance relation when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domtr 8939). (Contributed by BTernaryTau, 24-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | domtrfi 9112 | Transitivity of dominance relation when 𝐵 is finite, proved without using the Axiom of Power Sets (unlike domtr 8939). (Contributed by BTernaryTau, 24-Nov-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | domtrfir 9113 | Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr 8939). (Contributed by BTernaryTau, 24-Nov-2024.) |
| ⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | f1imaenfi 9114 | If a function is one-to-one, then the image of a finite subset of its domain under it is equinumerous to the subset. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1imaeng 8946). (Contributed by BTernaryTau, 29-Sep-2024.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ Fin) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
| Theorem | ssdomfi 9115 | A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8932). (Contributed by BTernaryTau, 12-Nov-2024.) |
| ⊢ (𝐵 ∈ Fin → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | ||
| Theorem | ssdomfi2 9116 | A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8932). (Contributed by BTernaryTau, 24-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | sbthfilem 9117* | Lemma for sbthfi 9118. (Contributed by BTernaryTau, 4-Nov-2024.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
| Theorem | sbthfi 9118 | Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth 9020). (Contributed by BTernaryTau, 4-Nov-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
| Theorem | domnsymfi 9119 | If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym 9026). (Contributed by BTernaryTau, 22-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) | ||
| Theorem | sdomdomtrfi 9120 | Transitivity of strict dominance and dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr 9033). (Contributed by BTernaryTau, 25-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | domsdomtrfi 9121 | Transitivity of dominance and strict dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domsdomtr 9035). (Contributed by BTernaryTau, 25-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | sucdom2 9122 | Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) Avoid ax-pow 5307. (Revised by BTernaryTau, 4-Dec-2024.) |
| ⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) | ||
| Theorem | phplem1 9123 | Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998.) Avoid ax-pow 5307. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) | ||
| Theorem | phplem2 9124 | Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) Avoid ax-pow 5307. (Revised by BTernaryTau, 4-Nov-2024.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) | ||
| Theorem | nneneq 9125 | Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.) Avoid ax-pow 5307. (Revised by BTernaryTau, 11-Nov-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | php 9126 | Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of phplem1 9123, phplem2 9124, nneneq 9125, and this final piece of the proof. (Contributed by NM, 29-May-1998.) Avoid ax-pow 5307. (Revised by BTernaryTau, 18-Nov-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | ||
| Theorem | php2 9127 | Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.) Avoid ax-pow 5307. (Revised by BTernaryTau, 20-Nov-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
| Theorem | php3 9128 | Corollary of Pigeonhole Principle. If 𝐴 is finite and 𝐵 is a proper subset of 𝐴, the 𝐵 is strictly less numerous than 𝐴. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5307. (Revised by BTernaryTau, 26-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
| Theorem | php4 9129 | Corollary of the Pigeonhole Principle php 9126: a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) | ||
| Theorem | php5 9130 | Corollary of the Pigeonhole Principle php 9126: a natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.) |
| ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) | ||
| Theorem | phpeqd 9131 | Corollary of the Pigeonhole Principle using equality. Strengthening of php 9126 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-pow 5307. (Revised by BTernaryTau, 28-Nov-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | nndomog 9132 | Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 9136 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9136. (Revised by RP, 5-Nov-2023.) Avoid ax-pow 5307. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | onomeneq 9133 | An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.) Avoid ax-pow 5307. (Revised by BTernaryTau, 2-Dec-2024.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | onfin 9134 | An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.) |
| ⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) | ||
| Theorem | onfin2 9135 | A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.) |
| ⊢ ω = (On ∩ Fin) | ||
| Theorem | nndomo 9136 | Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | nnsdomo 9137 | Cardinal ordering agrees with natural number ordering. (Contributed by NM, 17-Jun-1998.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≺ 𝐵 ↔ 𝐴 ⊊ 𝐵)) | ||
| Theorem | sucdom 9138 | Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-pow 5307. (Revised by BTernaryTau, 4-Dec-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
| ⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) | ||
| Theorem | snnen2o 9139 | A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5307, ax-un 7677. (Revised by BTernaryTau, 1-Dec-2024.) |
| ⊢ ¬ {𝐴} ≈ 2o | ||
| Theorem | 0sdom1dom 9140 | Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7677, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7677. (Revised by BTernaryTau, 7-Dec-2024.) |
| ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | ||
| Theorem | 0sdom1domALT 9141 | Alternate proof of 0sdom1dom 9140, shorter but requiring ax-un 7677. (Contributed by NM, 28-Sep-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | ||
| Theorem | 1sdom2 9142 | Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7677, see 1sdom2ALT 9143. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7677. (Revised by BTernaryTau, 8-Dec-2024.) |
| ⊢ 1o ≺ 2o | ||
| Theorem | 1sdom2ALT 9143 | Alternate proof of 1sdom2 9142, shorter but requiring ax-un 7677. (Contributed by NM, 4-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 1o ≺ 2o | ||
| Theorem | sdom1 9144 | A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.) Avoid ax-pow 5307, ax-un 7677. (Revised by BTernaryTau, 12-Dec-2024.) |
| ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) | ||
| Theorem | modom 9145 | Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1o) | ||
| Theorem | modom2 9146* | Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 ≼ 1o) | ||
| Theorem | rex2dom 9147* | A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) | ||
| Theorem | 1sdom2dom 9148 | Strict dominance over 1 is the same as dominance over 2. (Contributed by BTernaryTau, 23-Dec-2024.) |
| ⊢ (1o ≺ 𝐴 ↔ 2o ≼ 𝐴) | ||
| Theorem | 1sdom 9149* | A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 8962.) (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-un 7677. (Revised by BTernaryTau, 30-Dec-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) | ||
| Theorem | unxpdomlem1 9150* | Lemma for unxpdom 9153. (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) ⇒ ⊢ (𝑧 ∈ (𝑎 ∪ 𝑏) → (𝐹‘𝑧) = if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉)) | ||
| Theorem | unxpdomlem2 9151* | Lemma for unxpdom 9153. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) & ⊢ (𝜑 → 𝑤 ∈ (𝑎 ∪ 𝑏)) & ⊢ (𝜑 → ¬ 𝑚 = 𝑛) & ⊢ (𝜑 → ¬ 𝑠 = 𝑡) ⇒ ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎)) → ¬ (𝐹‘𝑧) = (𝐹‘𝑤)) | ||
| Theorem | unxpdomlem3 9152* | Lemma for unxpdom 9153. (Contributed by Mario Carneiro, 13-Jan-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) ⇒ ⊢ ((1o ≺ 𝑎 ∧ 1o ≺ 𝑏) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏)) | ||
| Theorem | unxpdom 9153 | Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
| ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) | ||
| Theorem | unxpdom2 9154 | Corollary of unxpdom 9153. (Contributed by NM, 16-Sep-2004.) |
| ⊢ ((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐴)) | ||
| Theorem | sucxpdom 9155 | Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
| ⊢ (1o ≺ 𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴)) | ||
| Theorem | pssinf 9156 | A set equinumerous to a proper subset of itself is infinite. Corollary 6D(a) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) |
| ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ∈ Fin) | ||
| Theorem | fisseneq 9157 | A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) | ||
| Theorem | ominf 9158 | The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) Avoid ax-pow 5307. (Revised by BTernaryTau, 2-Jan-2025.) |
| ⊢ ¬ ω ∈ Fin | ||
| Theorem | isinf 9159* | Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013.) Avoid ax-pow 5307. (Revised by BTernaryTau, 2-Jan-2025.) |
| ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
| Theorem | fineqvlem 9160 | Lemma for fineqv 9161. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴) | ||
| Theorem | fineqv 9161 | If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.) |
| ⊢ (¬ ω ∈ V ↔ Fin = V) | ||
| Theorem | xpfir 9162 | The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
| Theorem | ssfid 9163 | A subset of a finite set is finite, deduction version of ssfi 9092. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ Fin) | ||
| Theorem | infi 9164 | The intersection of two sets is finite if one of them is. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐵) ∈ Fin) | ||
| Theorem | rabfi 9165* | A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) | ||
| Theorem | finresfin 9166 | The restriction of a finite set is finite. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
| ⊢ (𝐸 ∈ Fin → (𝐸 ↾ 𝐵) ∈ Fin) | ||
| Theorem | f1finf1o 9167 | Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) Avoid ax-pow 5307. (Revised by BTernaryTau, 4-Jan-2025.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | ||
| Theorem | nfielex 9168* | If a class is not finite, then it contains at least one element. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
| ⊢ (¬ 𝐴 ∈ Fin → ∃𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | en1eqsn 9169 | A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) Avoid ax-pow 5307, ax-un 7677. (Revised by BTernaryTau, 4-Jan-2025.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | ||
| Theorem | en1eqsnbi 9170 | A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr 20702. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝐴})) | ||
| Theorem | dif1ennnALT 9171 | Alternate proof of dif1ennn 9082 using ax-pow 5307. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
| Theorem | enp1ilem 9172 | Lemma for uses of enp1i 9173. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ 𝑇 = ({𝑥} ∪ 𝑆) ⇒ ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆 → 𝐴 = 𝑇)) | ||
| Theorem | enp1i 9173* | Proof induction for en2 9174 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5307, ax-un 7677. (Revised by BTernaryTau, 6-Jan-2025.) |
| ⊢ Ord 𝑀 & ⊢ 𝑁 = suc 𝑀 & ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) & ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) | ||
| Theorem | en2 9174* | A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) | ||
| Theorem | en3 9175* | A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (𝐴 ≈ 3o → ∃𝑥∃𝑦∃𝑧 𝐴 = {𝑥, 𝑦, 𝑧}) | ||
| Theorem | en4 9176* | A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (𝐴 ≈ 4o → ∃𝑥∃𝑦∃𝑧∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})) | ||
| Theorem | findcard3 9177* | Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013.) Avoid ax-pow 5307. (Revised by BTernaryTau, 7-Jan-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 ∈ Fin → (∀𝑥(𝑥 ⊊ 𝑦 → 𝜑) → 𝜒)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | ac6sfi 9178* | A version of ac6s 10385 for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | frfi 9179 | A partial order is well-founded on a finite set. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 Fr 𝐴) | ||
| Theorem | fimax2g 9180* | A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | ||
| Theorem | fimaxg 9181* | A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦𝑅𝑥)) | ||
| Theorem | fisupg 9182* | Lemma showing existence and closure of supremum of a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))) | ||
| Theorem | wofi 9183 | A total order on a finite set is a well-order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 We 𝐴) | ||
| Theorem | ordunifi 9184 | The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) | ||
| Theorem | nnunifi 9185 | The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) | ||
| Theorem | unblem1 9186* | Lemma for unbnn 9190. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.) |
| ⊢ (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) ∧ 𝐴 ∈ 𝐵) → ∩ (𝐵 ∖ suc 𝐴) ∈ 𝐵) | ||
| Theorem | unblem2 9187* | Lemma for unbnn 9190. The value of the function 𝐹 belongs to the unbounded set of natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
| ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ 𝐴)) | ||
| Theorem | unblem3 9188* | Lemma for unbnn 9190. The value of the function 𝐹 is less than its value at a successor. (Contributed by NM, 3-Dec-2003.) |
| ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧))) | ||
| Theorem | unblem4 9189* | Lemma for unbnn 9190. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
| ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) | ||
| Theorem | unbnn 9190* | Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 9559 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.) |
| ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≈ ω) | ||
| Theorem | unbnn2 9191* | Version of unbnn 9190 that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004.) |
| ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) | ||
| Theorem | isfinite2 9192 | Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) | ||
| Theorem | nnsdomg 9193 | Omega strictly dominates a natural number. Example 3 of [Enderton] p. 146. In order to avoid the Axiom of Infinity, we include it as part of the antecedent. See nnsdom 9554 for the version without this sethood requirement. (Contributed by NM, 15-Jun-1998.) Avoid ax-pow 5307. (Revised by BTernaryTau, 7-Jan-2025.) |
| ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) | ||
| Theorem | isfiniteg 9194 | A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 3-Nov-2002.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| ⊢ (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)) | ||
| Theorem | infsdomnn 9195 | An infinite set strictly dominates a natural number. (Contributed by NM, 22-Nov-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) Avoid ax-pow 5307. (Revised by BTernaryTau, 7-Jan-2025.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐵 ∈ ω) → 𝐵 ≺ 𝐴) | ||
| Theorem | infn0 9196 | An infinite set is not empty. For a shorter proof using ax-un 7677, see infn0ALT 9197. (Contributed by NM, 23-Oct-2004.) Avoid ax-un 7677. (Revised by BTernaryTau, 8-Jan-2025.) |
| ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | ||
| Theorem | infn0ALT 9197 | Shorter proof of infn0 9196 using ax-un 7677. (Contributed by NM, 23-Oct-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | ||
| Theorem | fin2inf 9198 | This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.) |
| ⊢ (𝐴 ≺ ω → ω ∈ V) | ||
| Theorem | unfilem1 9199* | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ⇒ ⊢ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴) | ||
| Theorem | unfilem2 9200* | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ⇒ ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |