HomeHome Metamath Proof Explorer
Theorem List (p. 92 of 465)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29276)
  Hilbert Space Explorer  Hilbert Space Explorer
(29277-30799)
  Users' Mathboxes  Users' Mathboxes
(30800-46482)
 

Theorem List for Metamath Proof Explorer - 9101-9200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremf1opwfi 9101* A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015.)
(𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐹𝑏)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 𝐵 ∩ Fin))
 
Theoremfissuni 9102* A finite subset of a union is covered by finitely many elements. (Contributed by Stefan O'Rear, 2-Apr-2015.)
((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
 
Theoremfipreima 9103* Given a finite subset 𝐴 of the range of a function, there exists a finite subset of the domain whose image is 𝐴. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 22-Feb-2015.)
((𝐹 Fn 𝐵𝐴 ⊆ ran 𝐹𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)(𝐹𝑐) = 𝐴)
 
Theoremfinsschain 9104* A finite subset of the union of a superset chain is a subset of some element of the chain. A useful preliminary result for alexsub 23194 and others. (Contributed by Jeff Hankins, 25-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 18-May-2015.)
(((𝐴 ≠ ∅ ∧ [] Or 𝐴) ∧ (𝐵 ∈ Fin ∧ 𝐵 𝐴)) → ∃𝑧𝐴 𝐵𝑧)
 
Theoremindexfi 9105* If for every element of a finite indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a finite subset of 𝐵 consisting only of those elements which are indexed by 𝐴. Proven without the Axiom of Choice, unlike indexdom 35888. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
((𝐴 ∈ Fin ∧ 𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
 
2.4.31  Finitely supported functions
 
Syntaxcfsupp 9106 Extend class definition to include the predicate to be a finitely supported function.
class finSupp
 
Definitiondf-fsupp 9107* Define the property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.)
finSupp = {⟨𝑟, 𝑧⟩ ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)}
 
Theoremrelfsupp 9108 The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.)
Rel finSupp
 
Theoremrelprcnfsupp 9109 A proper class is never finitely supported. (Contributed by AV, 7-Jun-2019.)
𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍)
 
Theoremisfsupp 9110 The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019.)
((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
 
Theoremfunisfsupp 9111 The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.)
((Fun 𝑅𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (𝑅 supp 𝑍) ∈ Fin))
 
Theoremfsuppimp 9112 Implications of a class being a finitely supported function (in relation to a given zero). (Contributed by AV, 26-May-2019.)
(𝑅 finSupp 𝑍 → (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))
 
Theoremfsuppimpd 9113 A finitely supported function is a function with a finite support. (Contributed by AV, 6-Jun-2019.)
(𝜑𝐹 finSupp 𝑍)       (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
 
Theoremfisuppfi 9114 A function on a finite set is finitely supported. (Contributed by Mario Carneiro, 20-Jun-2015.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐹:𝐴𝐵)       (𝜑 → (𝐹𝐶) ∈ Fin)
 
Theoremfdmfisuppfi 9115 The support of a function with a finite domain is always finite. (Contributed by AV, 27-Apr-2019.)
(𝜑𝐹:𝐷𝑅)    &   (𝜑𝐷 ∈ Fin)    &   (𝜑𝑍𝑉)       (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
 
Theoremfdmfifsupp 9116 A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.)
(𝜑𝐹:𝐷𝑅)    &   (𝜑𝐷 ∈ Fin)    &   (𝜑𝑍𝑉)       (𝜑𝐹 finSupp 𝑍)
 
Theoremfsuppmptdm 9117* A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.)
𝐹 = (𝑥𝐴𝑌)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑥𝐴) → 𝑌𝑉)    &   (𝜑𝑍𝑊)       (𝜑𝐹 finSupp 𝑍)
 
Theoremfndmfisuppfi 9118 The support of a function with a finite domain is always finite. (Contributed by AV, 25-May-2019.)
(𝜑𝐹 Fn 𝐷)    &   (𝜑𝐷 ∈ Fin)    &   (𝜑𝑍𝑉)       (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
 
Theoremfndmfifsupp 9119 A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019.)
(𝜑𝐹 Fn 𝐷)    &   (𝜑𝐷 ∈ Fin)    &   (𝜑𝑍𝑉)       (𝜑𝐹 finSupp 𝑍)
 
Theoremsuppeqfsuppbi 9120 If two functions have the same support, one function is finitely supported iff the other one is finitely supported. (Contributed by AV, 30-Jun-2019.)
(((𝐹𝑈 ∧ Fun 𝐹) ∧ (𝐺𝑉 ∧ Fun 𝐺)) → ((𝐹 supp 𝑍) = (𝐺 supp 𝑍) → (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
 
Theoremsuppssfifsupp 9121 If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019.)
(((𝐺𝑉 ∧ Fun 𝐺𝑍𝑊) ∧ (𝐹 ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ 𝐹)) → 𝐺 finSupp 𝑍)
 
Theoremfsuppsssupp 9122 If the support of a function is a subset of the support of a finitely supported function, the function is finitely supported. (Contributed by AV, 2-Jul-2019.) (Proof shortened by AV, 15-Jul-2019.)
(((𝐺𝑉 ∧ Fun 𝐺) ∧ (𝐹 finSupp 𝑍 ∧ (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))) → 𝐺 finSupp 𝑍)
 
Theoremfsuppxpfi 9123 The cartesian product of two finitely supported functions is finite. (Contributed by AV, 17-Jul-2019.)
((𝐹 finSupp 𝑍𝐺 finSupp 𝑍) → ((𝐹 supp 𝑍) × (𝐺 supp 𝑍)) ∈ Fin)
 
Theoremfczfsuppd 9124 A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019.)
(𝜑𝐵𝑉)    &   (𝜑𝑍𝑊)       (𝜑 → (𝐵 × {𝑍}) finSupp 𝑍)
 
Theoremfsuppun 9125 The union of two finitely supported functions is finitely supported (but not necessarily a function!). (Contributed by AV, 3-Jun-2019.)
(𝜑𝐹 finSupp 𝑍)    &   (𝜑𝐺 finSupp 𝑍)       (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)
 
Theoremfsuppunfi 9126 The union of the support of two finitely supported functions is finite. (Contributed by AV, 1-Jul-2019.)
(𝜑𝐹 finSupp 𝑍)    &   (𝜑𝐺 finSupp 𝑍)       (𝜑 → ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ∈ Fin)
 
Theoremfsuppunbi 9127 If the union of two classes/functions is a function, this union is finitely supported iff the two functions are finitely supported. (Contributed by AV, 18-Jun-2019.)
(𝜑 → Fun (𝐹𝐺))       (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍𝐺 finSupp 𝑍)))
 
Theorem0fsupp 9128 The empty set is a finitely supported function. (Contributed by AV, 19-Jul-2019.)
(𝑍𝑉 → ∅ finSupp 𝑍)
 
Theoremsnopfsupp 9129 A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019.)
((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)
 
Theoremfunsnfsupp 9130 Finite support for a function extended by a singleton. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by AV, 19-Jul-2019.)
(((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
 
Theoremfsuppres 9131 The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.)
(𝜑𝐹 finSupp 𝑍)    &   (𝜑𝑍𝑉)       (𝜑 → (𝐹𝑋) finSupp 𝑍)
 
Theoremressuppfi 9132 If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019.)
(𝜑 → (dom 𝐹𝐵) ∈ Fin)    &   (𝜑𝐹𝑊)    &   (𝜑𝐺 = (𝐹𝐵))    &   (𝜑 → (𝐺 supp 𝑍) ∈ Fin)    &   (𝜑𝑍𝑉)       (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
 
Theoremresfsupp 9133 If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019.)
(𝜑 → (dom 𝐹𝐵) ∈ Fin)    &   (𝜑𝐹𝑊)    &   (𝜑 → Fun 𝐹)    &   (𝜑𝐺 = (𝐹𝐵))    &   (𝜑𝐺 finSupp 𝑍)    &   (𝜑𝑍𝑉)       (𝜑𝐹 finSupp 𝑍)
 
Theoremresfifsupp 9134 The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.)
(𝜑 → Fun 𝐹)    &   (𝜑𝑋 ∈ Fin)    &   (𝜑𝑍𝑉)       (𝜑 → (𝐹𝑋) finSupp 𝑍)
 
Theoremfrnfsuppbi 9135 Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019.)
((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 finSupp 𝑍 ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)))
 
Theoremfsuppmptif 9136* A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐴𝑉)    &   (𝜑𝑍𝑊)    &   (𝜑𝐹 finSupp 𝑍)       (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍)
 
Theoremsniffsupp 9137* A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019.)
(𝜑𝐼𝑉)    &   (𝜑0𝑊)    &   𝐹 = (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))       (𝜑𝐹 finSupp 0 )
 
Theoremfsuppcolem 9138 Lemma for fsuppco 9139. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.)
(𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)    &   (𝜑𝐺:𝑋1-1𝑌)       (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
 
Theoremfsuppco 9139 The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.)
(𝜑𝐹 finSupp 𝑍)    &   (𝜑𝐺:𝑋1-1𝑌)    &   (𝜑𝑍𝑊)    &   (𝜑𝐹𝑉)       (𝜑 → (𝐹𝐺) finSupp 𝑍)
 
Theoremfsuppco2 9140 The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor 9141 because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019.)
(𝜑𝑍𝑊)    &   (𝜑𝐹:𝐴𝐵)    &   (𝜑𝐺:𝐵𝐵)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐹 finSupp 𝑍)    &   (𝜑 → (𝐺𝑍) = 𝑍)       (𝜑 → (𝐺𝐹) finSupp 𝑍)
 
Theoremfsuppcor 9141 The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.)
(𝜑0𝑊)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹:𝐴𝐶)    &   (𝜑𝐺:𝐵𝐷)    &   (𝜑𝐶𝐵)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐹 finSupp 𝑍)    &   (𝜑 → (𝐺𝑍) = 0 )       (𝜑 → (𝐺𝐹) finSupp 0 )
 
Theoremmapfienlem1 9142* Lemma 1 for mapfien 9145. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}    &   𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}    &   𝑊 = (𝐺𝑍)    &   (𝜑𝐹:𝐶1-1-onto𝐴)    &   (𝜑𝐺:𝐵1-1-onto𝐷)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑌)    &   (𝜑𝑍𝐵)       ((𝜑𝑓𝑆) → (𝐺 ∘ (𝑓𝐹)) finSupp 𝑊)
 
Theoremmapfienlem2 9143* Lemma 2 for mapfien 9145. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}    &   𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}    &   𝑊 = (𝐺𝑍)    &   (𝜑𝐹:𝐶1-1-onto𝐴)    &   (𝜑𝐺:𝐵1-1-onto𝐷)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑌)    &   (𝜑𝑍𝐵)       ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) finSupp 𝑍)
 
Theoremmapfienlem3 9144* Lemma 3 for mapfien 9145. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}    &   𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}    &   𝑊 = (𝐺𝑍)    &   (𝜑𝐹:𝐶1-1-onto𝐴)    &   (𝜑𝐺:𝐵1-1-onto𝐷)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑌)    &   (𝜑𝑍𝐵)       ((𝜑𝑔𝑇) → ((𝐺𝑔) ∘ 𝐹) ∈ 𝑆)
 
Theoremmapfien 9145* A bijection of the base sets induces a bijection on the set of finitely supported functions. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}    &   𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}    &   𝑊 = (𝐺𝑍)    &   (𝜑𝐹:𝐶1-1-onto𝐴)    &   (𝜑𝐺:𝐵1-1-onto𝐷)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑌)    &   (𝜑𝑍𝐵)       (𝜑 → (𝑓𝑆 ↦ (𝐺 ∘ (𝑓𝐹))):𝑆1-1-onto𝑇)
 
Theoremmapfien2 9146* Equinumerousity relation for sets of finitely supported functions. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.)
𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 0 }    &   𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)    &   (𝜑0𝐵)    &   (𝜑𝑊𝐷)       (𝜑𝑆𝑇)
 
2.4.32  Finite intersections
 
Syntaxcfi 9147 Extend class notation with the function whose value is the class of finite intersections of the elements of a given set.
class fi
 
Definitiondf-fi 9148* Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 9151). (Contributed by FL, 27-Apr-2008.)
fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
 
Theoremfival 9149* The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
(𝐴𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
 
Theoremelfi 9150* Specific properties of an element of (fi‘𝐵). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
 
Theoremelfi2 9151* The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.)
(𝐵𝑉 → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥))
 
Theoremelfir 9152 Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.)
((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐵))
 
Theoremintrnfi 9153 Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015.)
((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ∈ (fi‘𝐵))
 
Theoremiinfi 9154* An indexed intersection of elements of 𝐶 is an element of the finite intersections of 𝐶. (Contributed by Mario Carneiro, 30-Aug-2015.)
((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝑥𝐴 𝐵 ∈ (fi‘𝐶))
 
Theoreminelfi 9155 The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.)
((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) ∈ (fi‘𝑋))
 
Theoremssfii 9156 Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
(𝐴𝑉𝐴 ⊆ (fi‘𝐴))
 
Theoremfi0 9157 The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.)
(fi‘∅) = ∅
 
Theoremfieq0 9158 A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
(𝐴𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅))
 
Theoremfiin 9159 The elements of (fi‘𝐶) are closed under finite intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐴𝐵) ∈ (fi‘𝐶))
 
Theoremdffi2 9160* The set of finite intersections is the smallest set that contains 𝐴 and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
(𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
 
Theoremfiss 9161 Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))
 
Theoreminficl 9162* A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
(𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
 
Theoremfipwuni 9163 The set of finite intersections of a set is contained in the powerset of the union of the elements of 𝐴. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
(fi‘𝐴) ⊆ 𝒫 𝐴
 
Theoremfisn 9164 A singleton is closed under finite intersections. (Contributed by Mario Carneiro, 3-Sep-2015.)
(fi‘{𝐴}) = {𝐴}
 
Theoremfiuni 9165 The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
(𝐴𝑉 𝐴 = (fi‘𝐴))
 
Theoremfipwss 9166 If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.)
(𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋)
 
Theoremelfiun 9167* A finite intersection of elements taken from a union of collections. (Contributed by Jeff Hankins, 15-Nov-2009.) (Proof shortened by Mario Carneiro, 26-Nov-2013.)
((𝐵𝐷𝐶𝐾) → (𝐴 ∈ (fi‘(𝐵𝐶)) ↔ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥𝑦))))
 
Theoremdffi3 9168* The set of finite intersections can be "constructed" inductively by iterating binary intersection ω-many times. (Contributed by Mario Carneiro, 21-Mar-2015.)
𝑅 = (𝑢 ∈ V ↦ ran (𝑦𝑢, 𝑧𝑢 ↦ (𝑦𝑧)))       (𝐴𝑉 → (fi‘𝐴) = (rec(𝑅, 𝐴) “ ω))
 
Theoremfifo 9169* Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.)
𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)       (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
 
2.4.33  Hall's marriage theorem
 
Theoremmarypha1lem 9170* Core induction for Philip Hall's marriage theorem. (Contributed by Stefan O'Rear, 19-Feb-2015.)
(𝐴 ∈ Fin → (𝑏 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑒 ∈ 𝒫 𝑐𝑒:𝐴1-1→V)))
 
Theoremmarypha1 9171* (Philip) Hall's marriage theorem, sufficiency: a finite relation contains an injection if there is no subset of its domain which would be forced to violate the pigeonhole principle. (Contributed by Stefan O'Rear, 20-Feb-2015.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐶 ⊆ (𝐴 × 𝐵))    &   ((𝜑𝑑𝐴) → 𝑑 ≼ (𝐶𝑑))       (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1𝐵)
 
Theoremmarypha2lem1 9172* Lemma for marypha2 9176. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))       𝑇 ⊆ (𝐴 × ran 𝐹)
 
Theoremmarypha2lem2 9173* Lemma for marypha2 9176. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))       𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
 
Theoremmarypha2lem3 9174* Lemma for marypha2 9176. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))       ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐺𝑇 ↔ ∀𝑥𝐴 (𝐺𝑥) ∈ (𝐹𝑥)))
 
Theoremmarypha2lem4 9175* Lemma for marypha2 9176. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))       ((𝐹 Fn 𝐴𝑋𝐴) → (𝑇𝑋) = (𝐹𝑋))
 
Theoremmarypha2 9176* Version of marypha1 9171 using a functional family of sets instead of a relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐹:𝐴⟶Fin)    &   ((𝜑𝑑𝐴) → 𝑑 (𝐹𝑑))       (𝜑 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
 
2.4.34  Supremum and infimum
 
Syntaxcsup 9177 Extend class notation to include supremum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐵. For example, 𝑅 could be 'less than' and 𝐵 could be the set of real numbers.
class sup(𝐴, 𝐵, 𝑅)
 
Syntaxcinf 9178 Extend class notation to include infimum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐵. For example, 𝑅 could be 'less than' and 𝐵 could be the set of real numbers.
class inf(𝐴, 𝐵, 𝑅)
 
Definitiondf-sup 9179* Define the supremum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the supremum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals whose square is less than 2; in this case the supremum is defined as the square root of 2 per sqrtval 14946. See dfsup2 9181 for alternate definition not requiring dummy variables. (Contributed by NM, 22-May-1999.)
sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
 
Definitiondf-inf 9180 Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.)
inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
 
Theoremdfsup2 9181 Quantifier-free definition of supremum. (Contributed by Scott Fenton, 19-Feb-2013.)
sup(𝐵, 𝐴, 𝑅) = (𝐴 ∖ ((𝑅𝐵) ∪ (𝑅 “ (𝐴 ∖ (𝑅𝐵)))))
 
Theoremsupeq1 9182 Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
(𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
 
Theoremsupeq1d 9183 Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐵 = 𝐶)       (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
 
Theoremsupeq1i 9184 Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐵 = 𝐶       sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)
 
Theoremsupeq2 9185 Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅))
 
Theoremsupeq3 9186 Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
(𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))
 
Theoremsupeq123d 9187 Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
(𝜑𝐴 = 𝐷)    &   (𝜑𝐵 = 𝐸)    &   (𝜑𝐶 = 𝐹)       (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹))
 
Theoremnfsup 9188 Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝑅       𝑥sup(𝐴, 𝐵, 𝑅)
 
Theoremsupmo 9189* Any class 𝐵 has at most one supremum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by NM, 5-May-1999.) (Revised by Mario Carneiro, 24-Dec-2016.)
(𝜑𝑅 Or 𝐴)       (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
 
Theoremsupexd 9190 A supremum is a set. (Contributed by NM, 22-May-1999.) (Revised by Mario Carneiro, 24-Dec-2016.)
(𝜑𝑅 Or 𝐴)       (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ V)
 
Theoremsupeu 9191* A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by NM, 12-Oct-2004.)
(𝜑𝑅 Or 𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
 
Theoremsupval2 9192* Alternate expression for the supremum. (Contributed by Mario Carneiro, 24-Dec-2016.) (Revised by Thierry Arnoux, 24-Sep-2017.)
(𝜑𝑅 Or 𝐴)       (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
 
Theoremeqsup 9193* Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.)
(𝜑𝑅 Or 𝐴)       (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
 
Theoremeqsupd 9194* Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.)
(𝜑𝑅 Or 𝐴)    &   (𝜑𝐶𝐴)    &   ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)    &   ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)       (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
 
Theoremsupcl 9195* A supremum belongs to its base class (closure law). See also supub 9196 and suplub 9197. (Contributed by NM, 12-Oct-2004.)
(𝜑𝑅 Or 𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
 
Theoremsupub 9196* A supremum is an upper bound. See also supcl 9195 and suplub 9197.

This proof demonstrates how to expand an iota-based definition (df-iota 6390) using riotacl2 7245.

(Contributed by NM, 12-Oct-2004.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)

(𝜑𝑅 Or 𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
 
Theoremsuplub 9197* A supremum is the least upper bound. See also supcl 9195 and supub 9196. (Contributed by NM, 13-Oct-2004.) (Revised by Mario Carneiro, 24-Dec-2016.)
(𝜑𝑅 Or 𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
 
Theoremsuplub2 9198* Bidirectional form of suplub 9197. (Contributed by Mario Carneiro, 6-Sep-2014.)
(𝜑𝑅 Or 𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))    &   (𝜑𝐵𝐴)       ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
 
Theoremsupnub 9199* An upper bound is not less than the supremum. (Contributed by NM, 13-Oct-2004.)
(𝜑𝑅 Or 𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → ((𝐶𝐴 ∧ ∀𝑧𝐵 ¬ 𝐶𝑅𝑧) → ¬ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
 
Theoremsupex 9200 A supremum is a set. (Contributed by NM, 22-May-1999.)
𝑅 Or 𝐴       sup(𝐵, 𝐴, 𝑅) ∈ V
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46482
  Copyright terms: Public domain < Previous  Next >