| Metamath
Proof Explorer Theorem List (p. 92 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | canth2g 9101 | Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) | ||
| Theorem | 2pwuninel 9102 | The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.) |
| ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 | ||
| Theorem | 2pwne 9103 | No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ≠ 𝐴) | ||
| Theorem | disjen 9104 | A stronger form of pwuninel 8257. We can use pwuninel 8257, 2pwuninel 9102 to create one or two sets disjoint from a given set 𝐴, but here we show that in fact such constructions exist for arbitrarily large disjoint extensions, which is to say that for any set 𝐵 we can construct a set 𝑥 that is equinumerous to it and disjoint from 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∩ (𝐵 × {𝒫 ∪ ran 𝐴})) = ∅ ∧ (𝐵 × {𝒫 ∪ ran 𝐴}) ≈ 𝐵)) | ||
| Theorem | disjenex 9105* | Existence version of disjen 9104. (Contributed by Mario Carneiro, 7-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵)) | ||
| Theorem | domss2 9106 | A corollary of disjenex 9105. If 𝐹 is an injection from 𝐴 to 𝐵 then 𝐺 is a right inverse of 𝐹 from 𝐵 to a superset of 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐺 = ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ⇒ ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐺:𝐵–1-1-onto→ran 𝐺 ∧ 𝐴 ⊆ ran 𝐺 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) | ||
| Theorem | domssex2 9107* | A corollary of disjenex 9105. If 𝐹 is an injection from 𝐴 to 𝐵 then there is a right inverse 𝑔 of 𝐹 from 𝐵 to a superset of 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑔(𝑔:𝐵–1-1→V ∧ (𝑔 ∘ 𝐹) = ( I ↾ 𝐴))) | ||
| Theorem | domssex 9108* | Weakening of domssex2 9107 to forget the functions in favor of dominance and equinumerosity. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ (𝐴 ≼ 𝐵 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝐵 ≈ 𝑥)) | ||
| Theorem | xpf1o 9109* | Construct a bijection on a Cartesian product given bijections on the factors. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑌):𝐶–1-1-onto→𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) | ||
| Theorem | xpen 9110 | Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) | ||
| Theorem | mapen 9111 | Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of [Enderton] p. 139. (Contributed by NM, 16-Dec-2003.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ↑m 𝐶) ≈ (𝐵 ↑m 𝐷)) | ||
| Theorem | mapdom1 9112 | Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
| ⊢ (𝐴 ≼ 𝐵 → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) | ||
| Theorem | mapxpen 9113 | Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ↑m 𝐵) ↑m 𝐶) ≈ (𝐴 ↑m (𝐵 × 𝐶))) | ||
| Theorem | xpmapenlem 9114* | Lemma for xpmapen 9115. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 = (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) & ⊢ 𝑅 = (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) & ⊢ 𝑆 = (𝑧 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) ⇒ ⊢ ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴 ↑m 𝐶) × (𝐵 ↑m 𝐶)) | ||
| Theorem | xpmapen 9115 | Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴 ↑m 𝐶) × (𝐵 ↑m 𝐶)) | ||
| Theorem | mapunen 9116 | Equinumerosity law for set exponentiation of a disjoint union. Exercise 4.45 of [Mendelson] p. 255. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐶 ↑m (𝐴 ∪ 𝐵)) ≈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵))) | ||
| Theorem | map2xp 9117 | A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) | ||
| Theorem | mapdom2 9118 | Order-preserving property of set exponentiation. Theorem 6L(d) of [Enderton] p. 149. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) → (𝐶 ↑m 𝐴) ≼ (𝐶 ↑m 𝐵)) | ||
| Theorem | mapdom3 9119 | Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 17-Jul-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) | ||
| Theorem | pwen 9120 | If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of [TakeutiZaring] p. 87. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) | ||
| Theorem | ssenen 9121* | Equinumerosity of equinumerous subsets of a set. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐴 ≈ 𝐵 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶)} ≈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶)}) | ||
| Theorem | limenpsi 9122 | A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ Lim 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) | ||
| Theorem | limensuci 9123 | A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
| ⊢ Lim 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) | ||
| Theorem | limensuc 9124 | A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴) | ||
| Theorem | infensuc 9125 | Any infinite ordinal is equinumerous to its successor. Exercise 7 of [TakeutiZaring] p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 13-Jan-2013.) |
| ⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴) | ||
| Theorem | dif1enlem 9126 | Lemma for rexdif1en 9128 and dif1en 9130. (Contributed by BTernaryTau, 18-Aug-2024.) Generalize to all ordinals and add a sethood requirement to avoid ax-un 7714. (Revised by BTernaryTau, 5-Jan-2025.) |
| ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On) ∧ 𝐹:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) | ||
| Theorem | dif1enlemOLD 9127 | Obsolete version of dif1enlem 9126 as of 5-Jan-2025. (Contributed by BTernaryTau, 18-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ω ∧ 𝐹:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) | ||
| Theorem | rexdif1en 9128* | If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals and avoid ax-un 7714. (Revised by BTernaryTau, 5-Jan-2025.) |
| ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) | ||
| Theorem | rexdif1enOLD 9129* | Obsolete version of rexdif1en 9128 as of 5-Jan-2025. (Contributed by BTernaryTau, 26-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) | ||
| Theorem | dif1en 9130 | If a set 𝐴 is equinumerous to the successor of an ordinal 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals. (Revised by BTernaryTau, 6-Jan-2025.) |
| ⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
| Theorem | dif1ennn 9131 | If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. See also dif1ennnALT 9229. (Contributed by BTernaryTau, 6-Jan-2025.) |
| ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
| Theorem | dif1enOLD 9132 | Obsolete version of dif1en 9130 as of 6-Jan-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 26-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
| Theorem | findcard 9133* | Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (∀𝑧 ∈ 𝑦 𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard2 9134* | Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.) Avoid ax-pow 5323. (Revised by BTernaryTau, 26-Aug-2024.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard2s 9135* | Variation of findcard2 9134 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard2d 9136* | Deduction version of findcard2 9134. (Contributed by SO, 16-Jul-2018.) |
| ⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝜃 → 𝜏)) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | nnfi 9137 | Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | ||
| Theorem | pssnn 9138* | A proper subset of a natural number is equinumerous to some smaller number. Lemma 6F of [Enderton] p. 137. (Contributed by NM, 22-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) Avoid ax-pow 5323. (Revised by BTernaryTau, 31-Jul-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) | ||
| Theorem | ssnnfi 9139 | A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
| Theorem | 0finOLD 9140 | Obsolete version of 0fi 9016 as of 13-Jan-2025. (Contributed by FL, 14-Jul-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∅ ∈ Fin | ||
| Theorem | unfi 9141 | The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 16-Nov-2002.) Avoid ax-pow 5323. (Revised by BTernaryTau, 7-Aug-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | ||
| Theorem | unfid 9142 | The union of two finite sets is finite. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ Fin) | ||
| Theorem | ssfi 9143 | A subset of a finite set is finite. Corollary 6G of [Enderton] p. 138. For a shorter proof using ax-pow 5323, see ssfiALT 9144. (Contributed by NM, 24-Jun-1998.) Avoid ax-pow 5323. (Revised by BTernaryTau, 12-Aug-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
| Theorem | ssfiALT 9144 | Shorter proof of ssfi 9143 using ax-pow 5323. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
| Theorem | diffi 9145 | If 𝐴 is finite, (𝐴 ∖ 𝐵) is finite. (Contributed by FL, 3-Aug-2009.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) | ||
| Theorem | cnvfi 9146 | If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014.) Avoid ax-pow 5323. (Revised by BTernaryTau, 9-Sep-2024.) |
| ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | ||
| Theorem | pwssfi 9147 | Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) | ||
| Theorem | fnfi 9148 | A version of fnex 7194 for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | ||
| Theorem | f1oenfi 9149 | If the domain of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1oeng 8945). (Contributed by BTernaryTau, 8-Sep-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1oenfirn 9150 | If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
| Theorem | f1domfi 9151 | If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 8946). (Contributed by BTernaryTau, 25-Sep-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | f1domfi2 9152 | If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g 8944). (Contributed by BTernaryTau, 24-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | enreffi 9153 | Equinumerosity is reflexive for finite sets, proved without using the Axiom of Power Sets (unlike enrefg 8958). (Contributed by BTernaryTau, 8-Sep-2024.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ≈ 𝐴) | ||
| Theorem | ensymfib 9154 | Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 8976). (Contributed by BTernaryTau, 9-Sep-2024.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | ||
| Theorem | entrfil 9155 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8980). (Contributed by BTernaryTau, 10-Sep-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
| Theorem | enfii 9156 | A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | ||
| Theorem | enfi 9157 | Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5323, see enfiALT 9158. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5323. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | ||
| Theorem | enfiALT 9158 | Shorter proof of enfi 9157 using ax-pow 5323. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | ||
| Theorem | domfi 9159 | A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | ||
| Theorem | entrfi 9160 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8980). (Contributed by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
| Theorem | entrfir 9161 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 8980). (Contributed by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
| Theorem | domtrfil 9162 | Transitivity of dominance relation when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domtr 8981). (Contributed by BTernaryTau, 24-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | domtrfi 9163 | Transitivity of dominance relation when 𝐵 is finite, proved without using the Axiom of Power Sets (unlike domtr 8981). (Contributed by BTernaryTau, 24-Nov-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | domtrfir 9164 | Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr 8981). (Contributed by BTernaryTau, 24-Nov-2024.) |
| ⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
| Theorem | f1imaenfi 9165 | If a function is one-to-one, then the image of a finite subset of its domain under it is equinumerous to the subset. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1imaeng 8988). (Contributed by BTernaryTau, 29-Sep-2024.) |
| ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ Fin) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
| Theorem | ssdomfi 9166 | A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8974). (Contributed by BTernaryTau, 12-Nov-2024.) |
| ⊢ (𝐵 ∈ Fin → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | ||
| Theorem | ssdomfi2 9167 | A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8974). (Contributed by BTernaryTau, 24-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) | ||
| Theorem | sbthfilem 9168* | Lemma for sbthfi 9169. (Contributed by BTernaryTau, 4-Nov-2024.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
| Theorem | sbthfi 9169 | Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth 9067). (Contributed by BTernaryTau, 4-Nov-2024.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
| Theorem | domnsymfi 9170 | If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym 9073). (Contributed by BTernaryTau, 22-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) | ||
| Theorem | sdomdomtrfi 9171 | Transitivity of strict dominance and dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr 9080). (Contributed by BTernaryTau, 25-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | domsdomtrfi 9172 | Transitivity of dominance and strict dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domsdomtr 9082). (Contributed by BTernaryTau, 25-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | ||
| Theorem | sucdom2 9173 | Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 4-Dec-2024.) |
| ⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) | ||
| Theorem | phplem1 9174 | Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998.) Avoid ax-pow 5323. (Revised by BTernaryTau, 23-Sep-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) | ||
| Theorem | phplem2 9175 | Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 4-Nov-2024.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) | ||
| Theorem | nneneq 9176 | Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.) Avoid ax-pow 5323. (Revised by BTernaryTau, 11-Nov-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | php 9177 | Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of phplem1 9174, phplem2 9175, nneneq 9176, and this final piece of the proof. (Contributed by NM, 29-May-1998.) Avoid ax-pow 5323. (Revised by BTernaryTau, 18-Nov-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | ||
| Theorem | php2 9178 | Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.) Avoid ax-pow 5323. (Revised by BTernaryTau, 20-Nov-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
| Theorem | php3 9179 | Corollary of Pigeonhole Principle. If 𝐴 is finite and 𝐵 is a proper subset of 𝐴, the 𝐵 is strictly less numerous than 𝐴. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5323. (Revised by BTernaryTau, 26-Nov-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
| Theorem | php4 9180 | Corollary of the Pigeonhole Principle php 9177: a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) | ||
| Theorem | php5 9181 | Corollary of the Pigeonhole Principle php 9177: a natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.) |
| ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) | ||
| Theorem | phpeqd 9182 | Corollary of the Pigeonhole Principle using equality. Strengthening of php 9177 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-pow 5323. (Revised by BTernaryTau, 28-Nov-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | nndomog 9183 | Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 9187 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9187. (Revised by RP, 5-Nov-2023.) Avoid ax-pow 5323. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | onomeneq 9184 | An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.) Avoid ax-pow 5323. (Revised by BTernaryTau, 2-Dec-2024.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | onfin 9185 | An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.) |
| ⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) | ||
| Theorem | onfin2 9186 | A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.) |
| ⊢ ω = (On ∩ Fin) | ||
| Theorem | nndomo 9187 | Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | nnsdomo 9188 | Cardinal ordering agrees with natural number ordering. (Contributed by NM, 17-Jun-1998.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≺ 𝐵 ↔ 𝐴 ⊊ 𝐵)) | ||
| Theorem | sucdom 9189 | Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-pow 5323. (Revised by BTernaryTau, 4-Dec-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
| ⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) | ||
| Theorem | sucdomOLD 9190 | Obsolete version of sucdom 9189 as of 4-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) | ||
| Theorem | snnen2o 9191 | A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5323, ax-un 7714. (Revised by BTernaryTau, 1-Dec-2024.) |
| ⊢ ¬ {𝐴} ≈ 2o | ||
| Theorem | 0sdom1dom 9192 | Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7714, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7714. (Revised by BTernaryTau, 7-Dec-2024.) |
| ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | ||
| Theorem | 0sdom1domALT 9193 | Alternate proof of 0sdom1dom 9192, shorter but requiring ax-un 7714. (Contributed by NM, 28-Sep-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | ||
| Theorem | 1sdom2 9194 | Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7714, see 1sdom2ALT 9195. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7714. (Revised by BTernaryTau, 8-Dec-2024.) |
| ⊢ 1o ≺ 2o | ||
| Theorem | 1sdom2ALT 9195 | Alternate proof of 1sdom2 9194, shorter but requiring ax-un 7714. (Contributed by NM, 4-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 1o ≺ 2o | ||
| Theorem | sdom1 9196 | A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.) Avoid ax-pow 5323, ax-un 7714. (Revised by BTernaryTau, 12-Dec-2024.) |
| ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) | ||
| Theorem | sdom1OLD 9197 | Obsolete version of sdom1 9196 as of 12-Dec-2024. (Contributed by Stefan O'Rear, 28-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) | ||
| Theorem | modom 9198 | Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| ⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1o) | ||
| Theorem | modom2 9199* | Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 ≼ 1o) | ||
| Theorem | rex2dom 9200* | A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |