MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnndir Structured version   Visualization version   GIF version

Theorem mulgnndir 19024
Description: Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgnndir ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgnndir
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpmgm 18640 . . . . . 6 (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm)
2 mulgnndir.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 mulgnndir.p . . . . . . 7 + = (+g𝐺)
42, 3mgmcl 18559 . . . . . 6 ((𝐺 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
51, 4syl3an1 1163 . . . . 5 ((𝐺 ∈ Smgrp ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
653expb 1120 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
76adantlr 715 . . 3 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
82, 3sgrpass 18641 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
98adantlr 715 . . 3 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
10 simpr2 1196 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑁 ∈ ℕ)
11 nnuz 12781 . . . . . 6 ℕ = (ℤ‘1)
1210, 11eleqtrdi 2843 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑁 ∈ (ℤ‘1))
13 simpr1 1195 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ ℕ)
1413nnzd 12505 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
15 eluzadd 12771 . . . . 5 ((𝑁 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ‘(1 + 𝑀)))
1612, 14, 15syl2anc 584 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑁 + 𝑀) ∈ (ℤ‘(1 + 𝑀)))
1713nncnd 12152 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ ℂ)
1810nncnd 12152 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑁 ∈ ℂ)
1917, 18addcomd 11326 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) = (𝑁 + 𝑀))
20 ax-1cn 11075 . . . . . 6 1 ∈ ℂ
21 addcom 11310 . . . . . 6 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + 1) = (1 + 𝑀))
2217, 20, 21sylancl 586 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 1) = (1 + 𝑀))
2322fveq2d 6835 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (ℤ‘(𝑀 + 1)) = (ℤ‘(1 + 𝑀)))
2416, 19, 233eltr4d 2848 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 1)))
2513, 11eleqtrdi 2843 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ (ℤ‘1))
26 simpr3 1197 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑋𝐵)
27 elfznn 13460 . . . . 5 (𝑥 ∈ (1...(𝑀 + 𝑁)) → 𝑥 ∈ ℕ)
28 fvconst2g 7145 . . . . 5 ((𝑋𝐵𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
2926, 27, 28syl2an 596 . . . 4 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
3026adantr 480 . . . 4 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → 𝑋𝐵)
3129, 30eqeltrd 2833 . . 3 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → ((ℕ × {𝑋})‘𝑥) ∈ 𝐵)
327, 9, 24, 25, 31seqsplit 13949 . 2 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))))
33 nnaddcl 12159 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
3413, 10, 33syl2anc 584 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ ℕ)
35 mulgnndir.t . . . 4 · = (.g𝐺)
36 eqid 2733 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
372, 3, 35, 36mulgnn 18996 . . 3 (((𝑀 + 𝑁) ∈ ℕ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))
3834, 26, 37syl2anc 584 . 2 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))
392, 3, 35, 36mulgnn 18996 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑋𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
4013, 26, 39syl2anc 584 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
41 elfznn 13460 . . . . . . 7 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
4226, 41, 28syl2an 596 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
4326adantr 480 . . . . . . 7 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋𝐵)
44 nnaddcl 12159 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑥 + 𝑀) ∈ ℕ)
4541, 13, 44syl2anr 597 . . . . . . 7 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 + 𝑀) ∈ ℕ)
46 fvconst2g 7145 . . . . . . 7 ((𝑋𝐵 ∧ (𝑥 + 𝑀) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑥 + 𝑀)) = 𝑋)
4743, 45, 46syl2anc 584 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘(𝑥 + 𝑀)) = 𝑋)
4842, 47eqtr4d 2771 . . . . 5 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = ((ℕ × {𝑋})‘(𝑥 + 𝑀)))
4912, 14, 48seqshft2 13942 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (seq1( + , (ℕ × {𝑋}))‘𝑁) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀)))
502, 3, 35, 36mulgnn 18996 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
5110, 26, 50syl2anc 584 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
5222seqeq1d 13921 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → seq(𝑀 + 1)( + , (ℕ × {𝑋})) = seq(1 + 𝑀)( + , (ℕ × {𝑋})))
5352, 19fveq12d 6838 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀)))
5449, 51, 533eqtr4d 2778 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) = (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))
5540, 54oveq12d 7373 . 2 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))))
5632, 38, 553eqtr4d 2778 1 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {csn 4577   × cxp 5619  cfv 6489  (class class class)co 7355  cc 11015  1c1 11018   + caddc 11020  cn 12136  cz 12479  cuz 12742  ...cfz 13414  seqcseq 13915  Basecbs 17127  +gcplusg 17168  Mgmcmgm 18554  Smgrpcsgrp 18634  .gcmg 18988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-seq 13916  df-mgm 18556  df-sgrp 18635  df-mulg 18989
This theorem is referenced by:  mulgnn0dir  19025  mulgnnass  19030  isarchi3  33197  fidomncyc  42705
  Copyright terms: Public domain W3C validator