Step | Hyp | Ref
| Expression |
1 | | sgrpmgm 18380 |
. . . . . 6
⊢ (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm) |
2 | | mulgnndir.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
3 | | mulgnndir.p |
. . . . . . 7
⊢ + =
(+g‘𝐺) |
4 | 2, 3 | mgmcl 18329 |
. . . . . 6
⊢ ((𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1162 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
6 | 5 | 3expb 1119 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
7 | 6 | adantlr 712 |
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
8 | 2, 3 | sgrpass 18381 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
9 | 8 | adantlr 712 |
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
10 | | simpr2 1194 |
. . . . . 6
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℕ) |
11 | | nnuz 12621 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
12 | 10, 11 | eleqtrdi 2849 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈
(ℤ≥‘1)) |
13 | | simpr1 1193 |
. . . . . 6
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℕ) |
14 | 13 | nnzd 12425 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℤ) |
15 | | eluzadd 12613 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘1) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ≥‘(1 +
𝑀))) |
16 | 12, 14, 15 | syl2anc 584 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑁 + 𝑀) ∈ (ℤ≥‘(1 +
𝑀))) |
17 | 13 | nncnd 11989 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℂ) |
18 | 10 | nncnd 11989 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℂ) |
19 | 17, 18 | addcomd 11177 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 𝑁) = (𝑁 + 𝑀)) |
20 | | ax-1cn 10929 |
. . . . . 6
⊢ 1 ∈
ℂ |
21 | | addcom 11161 |
. . . . . 6
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑀 + 1) =
(1 + 𝑀)) |
22 | 17, 20, 21 | sylancl 586 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 1) = (1 + 𝑀)) |
23 | 22 | fveq2d 6778 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) →
(ℤ≥‘(𝑀 + 1)) = (ℤ≥‘(1 +
𝑀))) |
24 | 16, 19, 23 | 3eltr4d 2854 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝑀 + 1))) |
25 | 13, 11 | eleqtrdi 2849 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈
(ℤ≥‘1)) |
26 | | simpr3 1195 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
27 | | elfznn 13285 |
. . . . 5
⊢ (𝑥 ∈ (1...(𝑀 + 𝑁)) → 𝑥 ∈ ℕ) |
28 | | fvconst2g 7077 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑥 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑥) = 𝑋) |
29 | 26, 27, 28 | syl2an 596 |
. . . 4
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → ((ℕ × {𝑋})‘𝑥) = 𝑋) |
30 | 26 | adantr 481 |
. . . 4
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → 𝑋 ∈ 𝐵) |
31 | 29, 30 | eqeltrd 2839 |
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → ((ℕ × {𝑋})‘𝑥) ∈ 𝐵) |
32 | 7, 9, 24, 25, 31 | seqsplit 13756 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))) |
33 | | nnaddcl 11996 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
34 | 13, 10, 33 | syl2anc 584 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 𝑁) ∈ ℕ) |
35 | | mulgnndir.t |
. . . 4
⊢ · =
(.g‘𝐺) |
36 | | eqid 2738 |
. . . 4
⊢ seq1(
+ ,
(ℕ × {𝑋})) =
seq1( + ,
(ℕ × {𝑋})) |
37 | 2, 3, 35, 36 | mulgnn 18708 |
. . 3
⊢ (((𝑀 + 𝑁) ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))) |
38 | 34, 26, 37 | syl2anc 584 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))) |
39 | 2, 3, 35, 36 | mulgnn 18708 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀)) |
40 | 13, 26, 39 | syl2anc 584 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀)) |
41 | | elfznn 13285 |
. . . . . . 7
⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) |
42 | 26, 41, 28 | syl2an 596 |
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋) |
43 | 26 | adantr 481 |
. . . . . . 7
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋 ∈ 𝐵) |
44 | | nnaddcl 11996 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑥 + 𝑀) ∈ ℕ) |
45 | 41, 13, 44 | syl2anr 597 |
. . . . . . 7
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 + 𝑀) ∈ ℕ) |
46 | | fvconst2g 7077 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ (𝑥 + 𝑀) ∈ ℕ) → ((ℕ ×
{𝑋})‘(𝑥 + 𝑀)) = 𝑋) |
47 | 43, 45, 46 | syl2anc 584 |
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘(𝑥 + 𝑀)) = 𝑋) |
48 | 42, 47 | eqtr4d 2781 |
. . . . 5
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = ((ℕ × {𝑋})‘(𝑥 + 𝑀))) |
49 | 12, 14, 48 | seqshft2 13749 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (seq1( + , (ℕ × {𝑋}))‘𝑁) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀))) |
50 | 2, 3, 35, 36 | mulgnn 18708 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
51 | 10, 26, 50 | syl2anc 584 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
52 | 22 | seqeq1d 13727 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → seq(𝑀 + 1)( + , (ℕ × {𝑋})) = seq(1 + 𝑀)( + , (ℕ × {𝑋}))) |
53 | 52, 19 | fveq12d 6781 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀))) |
54 | 49, 51, 53 | 3eqtr4d 2788 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑁 · 𝑋) = (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))) |
55 | 40, 54 | oveq12d 7293 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))) |
56 | 32, 38, 55 | 3eqtr4d 2788 |
1
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |