MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnndir Structured version   Visualization version   GIF version

Theorem mulgnndir 19001
Description: Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgnndir ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgnndir
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpmgm 18617 . . . . . 6 (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm)
2 mulgnndir.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 mulgnndir.p . . . . . . 7 + = (+g𝐺)
42, 3mgmcl 18536 . . . . . 6 ((𝐺 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
51, 4syl3an1 1163 . . . . 5 ((𝐺 ∈ Smgrp ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
653expb 1120 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
76adantlr 715 . . 3 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
82, 3sgrpass 18618 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
98adantlr 715 . . 3 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
10 simpr2 1196 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑁 ∈ ℕ)
11 nnuz 12797 . . . . . 6 ℕ = (ℤ‘1)
1210, 11eleqtrdi 2838 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑁 ∈ (ℤ‘1))
13 simpr1 1195 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ ℕ)
1413nnzd 12517 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
15 eluzadd 12783 . . . . 5 ((𝑁 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ‘(1 + 𝑀)))
1612, 14, 15syl2anc 584 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑁 + 𝑀) ∈ (ℤ‘(1 + 𝑀)))
1713nncnd 12163 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ ℂ)
1810nncnd 12163 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑁 ∈ ℂ)
1917, 18addcomd 11337 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) = (𝑁 + 𝑀))
20 ax-1cn 11086 . . . . . 6 1 ∈ ℂ
21 addcom 11321 . . . . . 6 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + 1) = (1 + 𝑀))
2217, 20, 21sylancl 586 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 1) = (1 + 𝑀))
2322fveq2d 6830 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (ℤ‘(𝑀 + 1)) = (ℤ‘(1 + 𝑀)))
2416, 19, 233eltr4d 2843 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 1)))
2513, 11eleqtrdi 2838 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ (ℤ‘1))
26 simpr3 1197 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑋𝐵)
27 elfznn 13475 . . . . 5 (𝑥 ∈ (1...(𝑀 + 𝑁)) → 𝑥 ∈ ℕ)
28 fvconst2g 7142 . . . . 5 ((𝑋𝐵𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
2926, 27, 28syl2an 596 . . . 4 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
3026adantr 480 . . . 4 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → 𝑋𝐵)
3129, 30eqeltrd 2828 . . 3 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...(𝑀 + 𝑁))) → ((ℕ × {𝑋})‘𝑥) ∈ 𝐵)
327, 9, 24, 25, 31seqsplit 13961 . 2 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))))
33 nnaddcl 12170 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
3413, 10, 33syl2anc 584 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ ℕ)
35 mulgnndir.t . . . 4 · = (.g𝐺)
36 eqid 2729 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
372, 3, 35, 36mulgnn 18973 . . 3 (((𝑀 + 𝑁) ∈ ℕ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))
3834, 26, 37syl2anc 584 . 2 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))
392, 3, 35, 36mulgnn 18973 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑋𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
4013, 26, 39syl2anc 584 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
41 elfznn 13475 . . . . . . 7 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
4226, 41, 28syl2an 596 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
4326adantr 480 . . . . . . 7 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋𝐵)
44 nnaddcl 12170 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑥 + 𝑀) ∈ ℕ)
4541, 13, 44syl2anr 597 . . . . . . 7 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 + 𝑀) ∈ ℕ)
46 fvconst2g 7142 . . . . . . 7 ((𝑋𝐵 ∧ (𝑥 + 𝑀) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑥 + 𝑀)) = 𝑋)
4743, 45, 46syl2anc 584 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘(𝑥 + 𝑀)) = 𝑋)
4842, 47eqtr4d 2767 . . . . 5 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = ((ℕ × {𝑋})‘(𝑥 + 𝑀)))
4912, 14, 48seqshft2 13954 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (seq1( + , (ℕ × {𝑋}))‘𝑁) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀)))
502, 3, 35, 36mulgnn 18973 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
5110, 26, 50syl2anc 584 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
5222seqeq1d 13933 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → seq(𝑀 + 1)( + , (ℕ × {𝑋})) = seq(1 + 𝑀)( + , (ℕ × {𝑋})))
5352, 19fveq12d 6833 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀)))
5449, 51, 533eqtr4d 2774 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) = (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))
5540, 54oveq12d 7371 . 2 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))))
5632, 38, 553eqtr4d 2774 1 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4579   × cxp 5621  cfv 6486  (class class class)co 7353  cc 11026  1c1 11029   + caddc 11031  cn 12147  cz 12490  cuz 12754  ...cfz 13429  seqcseq 13927  Basecbs 17139  +gcplusg 17180  Mgmcmgm 18531  Smgrpcsgrp 18611  .gcmg 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-seq 13928  df-mgm 18533  df-sgrp 18612  df-mulg 18966
This theorem is referenced by:  mulgnn0dir  19002  mulgnnass  19007  isarchi3  33148  fidomncyc  42528
  Copyright terms: Public domain W3C validator