MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsgrpccat Structured version   Visualization version   GIF version

Theorem gsumsgrpccat 18749
Description: Homomorphic property of not empty composites of a group sum over a semigroup. Formerly part of proof for gsumccat 18750. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
gsumwcl.b 𝐵 = (Base‘𝐺)
gsumsgrpccat.p + = (+g𝐺)
Assertion
Ref Expression
gsumsgrpccat ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))

Proof of Theorem gsumsgrpccat
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝐺 ∈ Smgrp)
2 sgrpmgm 18633 . . . . . . 7 (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm)
3 gsumwcl.b . . . . . . . 8 𝐵 = (Base‘𝐺)
4 gsumsgrpccat.p . . . . . . . 8 + = (+g𝐺)
53, 4mgmcl 18552 . . . . . . 7 ((𝐺 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
62, 5syl3an1 1163 . . . . . 6 ((𝐺 ∈ Smgrp ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
763expb 1120 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
81, 7sylan 580 . . . 4 (((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
93, 4sgrpass 18634 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
101, 9sylan 580 . . . 4 (((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
11 lennncl 14475 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐵𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
1211ad2ant2r 747 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℕ)
13123adant1 1130 . . . . . . . 8 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℕ)
1413nnzd 12532 . . . . . . 7 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℤ)
1514uzidd 12785 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ (ℤ‘(♯‘𝑊)))
16 lennncl 14475 . . . . . . . . 9 ((𝑋 ∈ Word 𝐵𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ)
1716ad2ant2l 746 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℕ)
18173adant1 1130 . . . . . . 7 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℕ)
19 nnm1nn0 12459 . . . . . . 7 ((♯‘𝑋) ∈ ℕ → ((♯‘𝑋) − 1) ∈ ℕ0)
2018, 19syl 17 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑋) − 1) ∈ ℕ0)
21 uzaddcl 12839 . . . . . 6 (((♯‘𝑊) ∈ (ℤ‘(♯‘𝑊)) ∧ ((♯‘𝑋) − 1) ∈ ℕ0) → ((♯‘𝑊) + ((♯‘𝑋) − 1)) ∈ (ℤ‘(♯‘𝑊)))
2215, 20, 21syl2anc 584 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + ((♯‘𝑋) − 1)) ∈ (ℤ‘(♯‘𝑊)))
2313nncnd 12178 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑊) ∈ ℂ)
2418nncnd 12178 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℂ)
25 1cnd 11145 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 1 ∈ ℂ)
2623, 24, 25addsubassd 11529 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) = ((♯‘𝑊) + ((♯‘𝑋) − 1)))
27 ax-1cn 11102 . . . . . . 7 1 ∈ ℂ
28 npcan 11406 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
2923, 27, 28sylancl 586 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
3029fveq2d 6844 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (ℤ‘(((♯‘𝑊) − 1) + 1)) = (ℤ‘(♯‘𝑊)))
3122, 26, 303eltr4d 2843 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ (ℤ‘(((♯‘𝑊) − 1) + 1)))
32 nnm1nn0 12459 . . . . . 6 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
3313, 32syl 17 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) − 1) ∈ ℕ0)
34 nn0uz 12811 . . . . 5 0 = (ℤ‘0)
3533, 34eleqtrdi 2838 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
36 ccatcl 14515 . . . . . . . 8 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝑊 ++ 𝑋) ∈ Word 𝐵)
37363ad2ant2 1134 . . . . . . 7 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊 ++ 𝑋) ∈ Word 𝐵)
38 wrdf 14459 . . . . . . 7 ((𝑊 ++ 𝑋) ∈ Word 𝐵 → (𝑊 ++ 𝑋):(0..^(♯‘(𝑊 ++ 𝑋)))⟶𝐵)
3937, 38syl 17 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊 ++ 𝑋):(0..^(♯‘(𝑊 ++ 𝑋)))⟶𝐵)
40 ccatlen 14516 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (♯‘(𝑊 ++ 𝑋)) = ((♯‘𝑊) + (♯‘𝑋)))
41403ad2ant2 1134 . . . . . . . . 9 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘(𝑊 ++ 𝑋)) = ((♯‘𝑊) + (♯‘𝑋)))
4241oveq2d 7385 . . . . . . . 8 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘(𝑊 ++ 𝑋))) = (0..^((♯‘𝑊) + (♯‘𝑋))))
4318nnzd 12532 . . . . . . . . . 10 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (♯‘𝑋) ∈ ℤ)
4414, 43zaddcld 12618 . . . . . . . . 9 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + (♯‘𝑋)) ∈ ℤ)
45 fzoval 13597 . . . . . . . . 9 (((♯‘𝑊) + (♯‘𝑋)) ∈ ℤ → (0..^((♯‘𝑊) + (♯‘𝑋))) = (0...(((♯‘𝑊) + (♯‘𝑋)) − 1)))
4644, 45syl 17 . . . . . . . 8 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^((♯‘𝑊) + (♯‘𝑋))) = (0...(((♯‘𝑊) + (♯‘𝑋)) − 1)))
4742, 46eqtrd 2764 . . . . . . 7 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘(𝑊 ++ 𝑋))) = (0...(((♯‘𝑊) + (♯‘𝑋)) − 1)))
4847feq2d 6654 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((𝑊 ++ 𝑋):(0..^(♯‘(𝑊 ++ 𝑋)))⟶𝐵 ↔ (𝑊 ++ 𝑋):(0...(((♯‘𝑊) + (♯‘𝑋)) − 1))⟶𝐵))
4939, 48mpbid 232 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊 ++ 𝑋):(0...(((♯‘𝑊) + (♯‘𝑋)) − 1))⟶𝐵)
5049ffvelcdmda 7038 . . . 4 (((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...(((♯‘𝑊) + (♯‘𝑋)) − 1))) → ((𝑊 ++ 𝑋)‘𝑥) ∈ 𝐵)
518, 10, 31, 35, 50seqsplit 13976 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = ((seq0( + , (𝑊 ++ 𝑋))‘((♯‘𝑊) − 1)) + (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1))))
52 simpl2l 1227 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝐵)
53 simpl2r 1228 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → 𝑋 ∈ Word 𝐵)
54 fzoval 13597 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
5514, 54syl 17 . . . . . . . 8 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
5655eleq2d 2814 . . . . . . 7 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
5756biimpar 477 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → 𝑥 ∈ (0..^(♯‘𝑊)))
58 ccatval1 14518 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 𝑋)‘𝑥) = (𝑊𝑥))
5952, 53, 57, 58syl3anc 1373 . . . . 5 (((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → ((𝑊 ++ 𝑋)‘𝑥) = (𝑊𝑥))
6035, 59seqfveq 13967 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , (𝑊 ++ 𝑋))‘((♯‘𝑊) − 1)) = (seq0( + , 𝑊)‘((♯‘𝑊) − 1)))
6123addlidd 11351 . . . . . . . 8 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0 + (♯‘𝑊)) = (♯‘𝑊))
6229, 61eqtr4d 2767 . . . . . . 7 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) − 1) + 1) = (0 + (♯‘𝑊)))
6362seqeq1d 13948 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋)) = seq(0 + (♯‘𝑊))( + , (𝑊 ++ 𝑋)))
6423, 24addcomd 11352 . . . . . . . 8 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + (♯‘𝑋)) = ((♯‘𝑋) + (♯‘𝑊)))
6564oveq1d 7384 . . . . . . 7 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) = (((♯‘𝑋) + (♯‘𝑊)) − 1))
6624, 23, 25addsubd 11530 . . . . . . 7 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑋) + (♯‘𝑊)) − 1) = (((♯‘𝑋) − 1) + (♯‘𝑊)))
6765, 66eqtrd 2764 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) = (((♯‘𝑋) − 1) + (♯‘𝑊)))
6863, 67fveq12d 6847 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = (seq(0 + (♯‘𝑊))( + , (𝑊 ++ 𝑋))‘(((♯‘𝑋) − 1) + (♯‘𝑊))))
6920, 34eleqtrdi 2838 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑋) − 1) ∈ (ℤ‘0))
70 simpl2l 1227 . . . . . . . 8 (((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → 𝑊 ∈ Word 𝐵)
71 simpl2r 1228 . . . . . . . 8 (((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → 𝑋 ∈ Word 𝐵)
72 fzoval 13597 . . . . . . . . . . 11 ((♯‘𝑋) ∈ ℤ → (0..^(♯‘𝑋)) = (0...((♯‘𝑋) − 1)))
7343, 72syl 17 . . . . . . . . . 10 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (0..^(♯‘𝑋)) = (0...((♯‘𝑋) − 1)))
7473eleq2d 2814 . . . . . . . . 9 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑥 ∈ (0..^(♯‘𝑋)) ↔ 𝑥 ∈ (0...((♯‘𝑋) − 1))))
7574biimpar 477 . . . . . . . 8 (((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → 𝑥 ∈ (0..^(♯‘𝑋)))
76 ccatval3 14520 . . . . . . . 8 ((𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑋))) → ((𝑊 ++ 𝑋)‘(𝑥 + (♯‘𝑊))) = (𝑋𝑥))
7770, 71, 75, 76syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → ((𝑊 ++ 𝑋)‘(𝑥 + (♯‘𝑊))) = (𝑋𝑥))
7877eqcomd 2735 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) ∧ 𝑥 ∈ (0...((♯‘𝑋) − 1))) → (𝑋𝑥) = ((𝑊 ++ 𝑋)‘(𝑥 + (♯‘𝑊))))
7969, 14, 78seqshft2 13969 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , 𝑋)‘((♯‘𝑋) − 1)) = (seq(0 + (♯‘𝑊))( + , (𝑊 ++ 𝑋))‘(((♯‘𝑋) − 1) + (♯‘𝑊))))
8068, 79eqtr4d 2767 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = (seq0( + , 𝑋)‘((♯‘𝑋) − 1)))
8160, 80oveq12d 7387 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((seq0( + , (𝑊 ++ 𝑋))‘((♯‘𝑊) − 1)) + (seq(((♯‘𝑊) − 1) + 1)( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1))) = ((seq0( + , 𝑊)‘((♯‘𝑊) − 1)) + (seq0( + , 𝑋)‘((♯‘𝑋) − 1))))
8251, 81eqtrd 2764 . 2 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)) = ((seq0( + , 𝑊)‘((♯‘𝑊) − 1)) + (seq0( + , 𝑋)‘((♯‘𝑋) − 1))))
8313, 18nnaddcld 12214 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((♯‘𝑊) + (♯‘𝑋)) ∈ ℕ)
84 nnm1nn0 12459 . . . . 5 (((♯‘𝑊) + (♯‘𝑋)) ∈ ℕ → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ ℕ0)
8583, 84syl 17 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ ℕ0)
8685, 34eleqtrdi 2838 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (((♯‘𝑊) + (♯‘𝑋)) − 1) ∈ (ℤ‘0))
873, 4, 1, 86, 49gsumval2 18595 . 2 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = (seq0( + , (𝑊 ++ 𝑋))‘(((♯‘𝑊) + (♯‘𝑋)) − 1)))
88 simp2l 1200 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑊 ∈ Word 𝐵)
89 wrdf 14459 . . . . . 6 (𝑊 ∈ Word 𝐵𝑊:(0..^(♯‘𝑊))⟶𝐵)
9088, 89syl 17 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑊:(0..^(♯‘𝑊))⟶𝐵)
9155feq2d 6654 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑊:(0..^(♯‘𝑊))⟶𝐵𝑊:(0...((♯‘𝑊) − 1))⟶𝐵))
9290, 91mpbid 232 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝐵)
933, 4, 1, 35, 92gsumval2 18595 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg 𝑊) = (seq0( + , 𝑊)‘((♯‘𝑊) − 1)))
94 simp2r 1201 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑋 ∈ Word 𝐵)
95 wrdf 14459 . . . . . 6 (𝑋 ∈ Word 𝐵𝑋:(0..^(♯‘𝑋))⟶𝐵)
9694, 95syl 17 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑋:(0..^(♯‘𝑋))⟶𝐵)
9773feq2d 6654 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝑋:(0..^(♯‘𝑋))⟶𝐵𝑋:(0...((♯‘𝑋) − 1))⟶𝐵))
9896, 97mpbid 232 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → 𝑋:(0...((♯‘𝑋) − 1))⟶𝐵)
993, 4, 1, 69, 98gsumval2 18595 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg 𝑋) = (seq0( + , 𝑋)‘((♯‘𝑋) − 1)))
10093, 99oveq12d 7387 . 2 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)) = ((seq0( + , 𝑊)‘((♯‘𝑊) − 1)) + (seq0( + , 𝑋)‘((♯‘𝑋) − 1))))
10182, 87, 1003eqtr4d 2774 1 ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  c0 4292  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047  cmin 11381  cn 12162  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  ..^cfzo 13591  seqcseq 13942  chash 14271  Word cword 14454   ++ cconcat 14511  Basecbs 17155  +gcplusg 17196   Σg cgsu 17379  Mgmcmgm 18547  Smgrpcsgrp 18627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-word 14455  df-concat 14512  df-0g 17380  df-gsum 17381  df-mgm 18549  df-sgrp 18628
This theorem is referenced by:  gsumccat  18750
  Copyright terms: Public domain W3C validator