MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnass Structured version   Visualization version   GIF version

Theorem mulgnnass 18258
Description: Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgnnass ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgnnass
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7146 . . . . . . . 8 (𝑛 = 1 → (𝑛 · 𝑁) = (1 · 𝑁))
21oveq1d 7154 . . . . . . 7 (𝑛 = 1 → ((𝑛 · 𝑁) · 𝑋) = ((1 · 𝑁) · 𝑋))
3 oveq1 7146 . . . . . . 7 (𝑛 = 1 → (𝑛 · (𝑁 · 𝑋)) = (1 · (𝑁 · 𝑋)))
42, 3eqeq12d 2817 . . . . . 6 (𝑛 = 1 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋))))
54imbi2d 344 . . . . 5 (𝑛 = 1 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋)))))
6 oveq1 7146 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 · 𝑁) = (𝑚 · 𝑁))
76oveq1d 7154 . . . . . . 7 (𝑛 = 𝑚 → ((𝑛 · 𝑁) · 𝑋) = ((𝑚 · 𝑁) · 𝑋))
8 oveq1 7146 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 · (𝑁 · 𝑋)) = (𝑚 · (𝑁 · 𝑋)))
97, 8eqeq12d 2817 . . . . . 6 (𝑛 = 𝑚 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋))))
109imbi2d 344 . . . . 5 (𝑛 = 𝑚 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)))))
11 oveq1 7146 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝑛 · 𝑁) = ((𝑚 + 1) · 𝑁))
1211oveq1d 7154 . . . . . . 7 (𝑛 = (𝑚 + 1) → ((𝑛 · 𝑁) · 𝑋) = (((𝑚 + 1) · 𝑁) · 𝑋))
13 oveq1 7146 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑛 · (𝑁 · 𝑋)) = ((𝑚 + 1) · (𝑁 · 𝑋)))
1412, 13eqeq12d 2817 . . . . . 6 (𝑛 = (𝑚 + 1) → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋))))
1514imbi2d 344 . . . . 5 (𝑛 = (𝑚 + 1) → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
16 oveq1 7146 . . . . . . . 8 (𝑛 = 𝑀 → (𝑛 · 𝑁) = (𝑀 · 𝑁))
1716oveq1d 7154 . . . . . . 7 (𝑛 = 𝑀 → ((𝑛 · 𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
18 oveq1 7146 . . . . . . 7 (𝑛 = 𝑀 → (𝑛 · (𝑁 · 𝑋)) = (𝑀 · (𝑁 · 𝑋)))
1917, 18eqeq12d 2817 . . . . . 6 (𝑛 = 𝑀 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
2019imbi2d 344 . . . . 5 (𝑛 = 𝑀 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))))
21 nncn 11637 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2221mulid2d 10652 . . . . . . . 8 (𝑁 ∈ ℕ → (1 · 𝑁) = 𝑁)
23223ad2ant1 1130 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (1 · 𝑁) = 𝑁)
2423oveq1d 7154 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((1 · 𝑁) · 𝑋) = (𝑁 · 𝑋))
25 sgrpmgm 17902 . . . . . . . . 9 (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm)
26 mulgass.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
27 mulgass.t . . . . . . . . . 10 · = (.g𝐺)
2826, 27mulgnncl 18239 . . . . . . . . 9 ((𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
2925, 28syl3an1 1160 . . . . . . . 8 ((𝐺 ∈ Smgrp ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
30293coml 1124 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (𝑁 · 𝑋) ∈ 𝐵)
3126, 27mulg1 18231 . . . . . . 7 ((𝑁 · 𝑋) ∈ 𝐵 → (1 · (𝑁 · 𝑋)) = (𝑁 · 𝑋))
3230, 31syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (1 · (𝑁 · 𝑋)) = (𝑁 · 𝑋))
3324, 32eqtr4d 2839 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋)))
34 oveq1 7146 . . . . . . . 8 (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
35 nncn 11637 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3635adantr 484 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑚 ∈ ℂ)
37 simpr1 1191 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑁 ∈ ℕ)
3837nncnd 11645 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑁 ∈ ℂ)
3936, 38adddirp1d 10660 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → ((𝑚 + 1) · 𝑁) = ((𝑚 · 𝑁) + 𝑁))
4039oveq1d 7154 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 + 1) · 𝑁) · 𝑋) = (((𝑚 · 𝑁) + 𝑁) · 𝑋))
41 simpr3 1193 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝐺 ∈ Smgrp)
42 nnmulcl 11653 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑚 · 𝑁) ∈ ℕ)
43423ad2antr1 1185 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (𝑚 · 𝑁) ∈ ℕ)
44 simpr2 1192 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑋𝐵)
45 eqid 2801 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
4626, 27, 45mulgnndir 18252 . . . . . . . . . . 11 ((𝐺 ∈ Smgrp ∧ ((𝑚 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (((𝑚 · 𝑁) + 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
4741, 43, 37, 44, 46syl13anc 1369 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 · 𝑁) + 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
4840, 47eqtrd 2836 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 + 1) · 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
4926, 27, 45mulgnnp1 18232 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑚 + 1) · (𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
5030, 49sylan2 595 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → ((𝑚 + 1) · (𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
5148, 50eqeq12d 2817 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → ((((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)) ↔ (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋))))
5234, 51syl5ibr 249 . . . . . . 7 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋))))
5352ex 416 . . . . . 6 (𝑚 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
5453a2d 29 . . . . 5 (𝑚 ∈ ℕ → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋))) → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
555, 10, 15, 20, 33, 54nnind 11647 . . . 4 (𝑀 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
56553expd 1350 . . 3 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑋𝐵 → (𝐺 ∈ Smgrp → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))))
5756com4r 94 . 2 (𝐺 ∈ Smgrp → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑋𝐵 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))))
58573imp2 1346 1 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  cfv 6328  (class class class)co 7139  cc 10528  1c1 10531   + caddc 10533   · cmul 10535  cn 11629  Basecbs 16479  +gcplusg 16561  Mgmcmgm 17846  Smgrpcsgrp 17896  .gcmg 18220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-seq 13369  df-mgm 17848  df-sgrp 17897  df-mulg 18221
This theorem is referenced by:  mulgnn0ass  18259
  Copyright terms: Public domain W3C validator