MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnass Structured version   Visualization version   GIF version

Theorem mulgnnass 19023
Description: Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgnnass ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgnnass
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7376 . . . . . . . 8 (𝑛 = 1 → (𝑛 · 𝑁) = (1 · 𝑁))
21oveq1d 7384 . . . . . . 7 (𝑛 = 1 → ((𝑛 · 𝑁) · 𝑋) = ((1 · 𝑁) · 𝑋))
3 oveq1 7376 . . . . . . 7 (𝑛 = 1 → (𝑛 · (𝑁 · 𝑋)) = (1 · (𝑁 · 𝑋)))
42, 3eqeq12d 2745 . . . . . 6 (𝑛 = 1 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋))))
54imbi2d 340 . . . . 5 (𝑛 = 1 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋)))))
6 oveq1 7376 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 · 𝑁) = (𝑚 · 𝑁))
76oveq1d 7384 . . . . . . 7 (𝑛 = 𝑚 → ((𝑛 · 𝑁) · 𝑋) = ((𝑚 · 𝑁) · 𝑋))
8 oveq1 7376 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 · (𝑁 · 𝑋)) = (𝑚 · (𝑁 · 𝑋)))
97, 8eqeq12d 2745 . . . . . 6 (𝑛 = 𝑚 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋))))
109imbi2d 340 . . . . 5 (𝑛 = 𝑚 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)))))
11 oveq1 7376 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝑛 · 𝑁) = ((𝑚 + 1) · 𝑁))
1211oveq1d 7384 . . . . . . 7 (𝑛 = (𝑚 + 1) → ((𝑛 · 𝑁) · 𝑋) = (((𝑚 + 1) · 𝑁) · 𝑋))
13 oveq1 7376 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑛 · (𝑁 · 𝑋)) = ((𝑚 + 1) · (𝑁 · 𝑋)))
1412, 13eqeq12d 2745 . . . . . 6 (𝑛 = (𝑚 + 1) → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋))))
1514imbi2d 340 . . . . 5 (𝑛 = (𝑚 + 1) → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
16 oveq1 7376 . . . . . . . 8 (𝑛 = 𝑀 → (𝑛 · 𝑁) = (𝑀 · 𝑁))
1716oveq1d 7384 . . . . . . 7 (𝑛 = 𝑀 → ((𝑛 · 𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
18 oveq1 7376 . . . . . . 7 (𝑛 = 𝑀 → (𝑛 · (𝑁 · 𝑋)) = (𝑀 · (𝑁 · 𝑋)))
1917, 18eqeq12d 2745 . . . . . 6 (𝑛 = 𝑀 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
2019imbi2d 340 . . . . 5 (𝑛 = 𝑀 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))))
21 nncn 12170 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2221mullidd 11168 . . . . . . . 8 (𝑁 ∈ ℕ → (1 · 𝑁) = 𝑁)
23223ad2ant1 1133 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (1 · 𝑁) = 𝑁)
2423oveq1d 7384 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((1 · 𝑁) · 𝑋) = (𝑁 · 𝑋))
25 sgrpmgm 18633 . . . . . . . . 9 (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm)
26 mulgass.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
27 mulgass.t . . . . . . . . . 10 · = (.g𝐺)
2826, 27mulgnncl 19003 . . . . . . . . 9 ((𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
2925, 28syl3an1 1163 . . . . . . . 8 ((𝐺 ∈ Smgrp ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
30293coml 1127 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (𝑁 · 𝑋) ∈ 𝐵)
3126, 27mulg1 18995 . . . . . . 7 ((𝑁 · 𝑋) ∈ 𝐵 → (1 · (𝑁 · 𝑋)) = (𝑁 · 𝑋))
3230, 31syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (1 · (𝑁 · 𝑋)) = (𝑁 · 𝑋))
3324, 32eqtr4d 2767 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋)))
34 oveq1 7376 . . . . . . . 8 (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
35 nncn 12170 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3635adantr 480 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑚 ∈ ℂ)
37 simpr1 1195 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑁 ∈ ℕ)
3837nncnd 12178 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑁 ∈ ℂ)
3936, 38adddirp1d 11176 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → ((𝑚 + 1) · 𝑁) = ((𝑚 · 𝑁) + 𝑁))
4039oveq1d 7384 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 + 1) · 𝑁) · 𝑋) = (((𝑚 · 𝑁) + 𝑁) · 𝑋))
41 simpr3 1197 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝐺 ∈ Smgrp)
42 nnmulcl 12186 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑚 · 𝑁) ∈ ℕ)
43423ad2antr1 1189 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (𝑚 · 𝑁) ∈ ℕ)
44 simpr2 1196 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑋𝐵)
45 eqid 2729 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
4626, 27, 45mulgnndir 19017 . . . . . . . . . . 11 ((𝐺 ∈ Smgrp ∧ ((𝑚 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (((𝑚 · 𝑁) + 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
4741, 43, 37, 44, 46syl13anc 1374 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 · 𝑁) + 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
4840, 47eqtrd 2764 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 + 1) · 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
4926, 27, 45mulgnnp1 18996 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑚 + 1) · (𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
5030, 49sylan2 593 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → ((𝑚 + 1) · (𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
5148, 50eqeq12d 2745 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → ((((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)) ↔ (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋))))
5234, 51imbitrrid 246 . . . . . . 7 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋))))
5352ex 412 . . . . . 6 (𝑚 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
5453a2d 29 . . . . 5 (𝑚 ∈ ℕ → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋))) → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
555, 10, 15, 20, 33, 54nnind 12180 . . . 4 (𝑀 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
56553expd 1354 . . 3 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑋𝐵 → (𝐺 ∈ Smgrp → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))))
5756com4r 94 . 2 (𝐺 ∈ Smgrp → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑋𝐵 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))))
58573imp2 1350 1 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cc 11042  1c1 11045   + caddc 11047   · cmul 11049  cn 12162  Basecbs 17155  +gcplusg 17196  Mgmcmgm 18547  Smgrpcsgrp 18627  .gcmg 18981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943  df-mgm 18549  df-sgrp 18628  df-mulg 18982
This theorem is referenced by:  mulgnn0ass  19024
  Copyright terms: Public domain W3C validator