MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnass Structured version   Visualization version   GIF version

Theorem mulgnnass 18738
Description: Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgnnass ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgnnass
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . . . . . . 8 (𝑛 = 1 → (𝑛 · 𝑁) = (1 · 𝑁))
21oveq1d 7290 . . . . . . 7 (𝑛 = 1 → ((𝑛 · 𝑁) · 𝑋) = ((1 · 𝑁) · 𝑋))
3 oveq1 7282 . . . . . . 7 (𝑛 = 1 → (𝑛 · (𝑁 · 𝑋)) = (1 · (𝑁 · 𝑋)))
42, 3eqeq12d 2754 . . . . . 6 (𝑛 = 1 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋))))
54imbi2d 341 . . . . 5 (𝑛 = 1 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋)))))
6 oveq1 7282 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 · 𝑁) = (𝑚 · 𝑁))
76oveq1d 7290 . . . . . . 7 (𝑛 = 𝑚 → ((𝑛 · 𝑁) · 𝑋) = ((𝑚 · 𝑁) · 𝑋))
8 oveq1 7282 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 · (𝑁 · 𝑋)) = (𝑚 · (𝑁 · 𝑋)))
97, 8eqeq12d 2754 . . . . . 6 (𝑛 = 𝑚 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋))))
109imbi2d 341 . . . . 5 (𝑛 = 𝑚 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)))))
11 oveq1 7282 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝑛 · 𝑁) = ((𝑚 + 1) · 𝑁))
1211oveq1d 7290 . . . . . . 7 (𝑛 = (𝑚 + 1) → ((𝑛 · 𝑁) · 𝑋) = (((𝑚 + 1) · 𝑁) · 𝑋))
13 oveq1 7282 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑛 · (𝑁 · 𝑋)) = ((𝑚 + 1) · (𝑁 · 𝑋)))
1412, 13eqeq12d 2754 . . . . . 6 (𝑛 = (𝑚 + 1) → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋))))
1514imbi2d 341 . . . . 5 (𝑛 = (𝑚 + 1) → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
16 oveq1 7282 . . . . . . . 8 (𝑛 = 𝑀 → (𝑛 · 𝑁) = (𝑀 · 𝑁))
1716oveq1d 7290 . . . . . . 7 (𝑛 = 𝑀 → ((𝑛 · 𝑁) · 𝑋) = ((𝑀 · 𝑁) · 𝑋))
18 oveq1 7282 . . . . . . 7 (𝑛 = 𝑀 → (𝑛 · (𝑁 · 𝑋)) = (𝑀 · (𝑁 · 𝑋)))
1917, 18eqeq12d 2754 . . . . . 6 (𝑛 = 𝑀 → (((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋)) ↔ ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
2019imbi2d 341 . . . . 5 (𝑛 = 𝑀 → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑛 · 𝑁) · 𝑋) = (𝑛 · (𝑁 · 𝑋))) ↔ ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))))
21 nncn 11981 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2221mulid2d 10993 . . . . . . . 8 (𝑁 ∈ ℕ → (1 · 𝑁) = 𝑁)
23223ad2ant1 1132 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (1 · 𝑁) = 𝑁)
2423oveq1d 7290 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((1 · 𝑁) · 𝑋) = (𝑁 · 𝑋))
25 sgrpmgm 18380 . . . . . . . . 9 (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm)
26 mulgass.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
27 mulgass.t . . . . . . . . . 10 · = (.g𝐺)
2826, 27mulgnncl 18719 . . . . . . . . 9 ((𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
2925, 28syl3an1 1162 . . . . . . . 8 ((𝐺 ∈ Smgrp ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
30293coml 1126 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (𝑁 · 𝑋) ∈ 𝐵)
3126, 27mulg1 18711 . . . . . . 7 ((𝑁 · 𝑋) ∈ 𝐵 → (1 · (𝑁 · 𝑋)) = (𝑁 · 𝑋))
3230, 31syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (1 · (𝑁 · 𝑋)) = (𝑁 · 𝑋))
3324, 32eqtr4d 2781 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((1 · 𝑁) · 𝑋) = (1 · (𝑁 · 𝑋)))
34 oveq1 7282 . . . . . . . 8 (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
35 nncn 11981 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3635adantr 481 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑚 ∈ ℂ)
37 simpr1 1193 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑁 ∈ ℕ)
3837nncnd 11989 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑁 ∈ ℂ)
3936, 38adddirp1d 11001 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → ((𝑚 + 1) · 𝑁) = ((𝑚 · 𝑁) + 𝑁))
4039oveq1d 7290 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 + 1) · 𝑁) · 𝑋) = (((𝑚 · 𝑁) + 𝑁) · 𝑋))
41 simpr3 1195 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝐺 ∈ Smgrp)
42 nnmulcl 11997 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑚 · 𝑁) ∈ ℕ)
43423ad2antr1 1187 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (𝑚 · 𝑁) ∈ ℕ)
44 simpr2 1194 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → 𝑋𝐵)
45 eqid 2738 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
4626, 27, 45mulgnndir 18732 . . . . . . . . . . 11 ((𝐺 ∈ Smgrp ∧ ((𝑚 · 𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (((𝑚 · 𝑁) + 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
4741, 43, 37, 44, 46syl13anc 1371 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 · 𝑁) + 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
4840, 47eqtrd 2778 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 + 1) · 𝑁) · 𝑋) = (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)))
4926, 27, 45mulgnnp1 18712 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑚 + 1) · (𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
5030, 49sylan2 593 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → ((𝑚 + 1) · (𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋)))
5148, 50eqeq12d 2754 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → ((((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)) ↔ (((𝑚 · 𝑁) · 𝑋)(+g𝐺)(𝑁 · 𝑋)) = ((𝑚 · (𝑁 · 𝑋))(+g𝐺)(𝑁 · 𝑋))))
5234, 51syl5ibr 245 . . . . . . 7 ((𝑚 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp)) → (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋))))
5352ex 413 . . . . . 6 (𝑚 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋)) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
5453a2d 29 . . . . 5 (𝑚 ∈ ℕ → (((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑚 · 𝑁) · 𝑋) = (𝑚 · (𝑁 · 𝑋))) → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → (((𝑚 + 1) · 𝑁) · 𝑋) = ((𝑚 + 1) · (𝑁 · 𝑋)))))
555, 10, 15, 20, 33, 54nnind 11991 . . . 4 (𝑀 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑋𝐵𝐺 ∈ Smgrp) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
56553expd 1352 . . 3 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑋𝐵 → (𝐺 ∈ Smgrp → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))))
5756com4r 94 . 2 (𝐺 ∈ Smgrp → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑋𝐵 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))))
58573imp2 1348 1 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874   · cmul 10876  cn 11973  Basecbs 16912  +gcplusg 16962  Mgmcmgm 18324  Smgrpcsgrp 18374  .gcmg 18700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-mgm 18326  df-sgrp 18375  df-mulg 18701
This theorem is referenced by:  mulgnn0ass  18739
  Copyright terms: Public domain W3C validator