![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 790 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant1 1164 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 |
This theorem is referenced by: f1imass 6747 smo11 7698 zsupss 12018 lsmcv 19460 lspsolvlem 19461 mat2pmatghm 20860 mat2pmatmul 20861 nrmr0reg 21878 plyadd 24311 plymul 24312 coeeu 24319 ax5seglem6 26163 archiabl 30260 mdetpmtr1 30397 sseqval 30959 wsuclem 32275 btwnconn1lem1 32699 btwnconn1lem2 32700 btwnconn1lem12 32710 lshpsmreu 35122 1cvratlt 35487 llnle 35531 lvolex3N 35551 lnjatN 35793 lncvrat 35795 lncmp 35796 cdlemd6 36216 cdlemk19ylem 36943 pellex 38173 limcperiod 40592 |
Copyright terms: Public domain | W3C validator |