Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 770 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: f1imass 7137 smo11 8195 zsupss 12677 lsmcv 20403 lspsolvlem 20404 mat2pmatghm 21879 mat2pmatmul 21880 nrmr0reg 22900 plyadd 25378 plymul 25379 coeeu 25386 ax5seglem6 27302 archiabl 31452 mdetpmtr1 31773 sseqval 32355 wsuclem 33819 btwnconn1lem1 34389 btwnconn1lem2 34390 btwnconn1lem12 34400 lshpsmreu 37123 1cvratlt 37488 llnle 37532 lvolex3N 37552 lnjatN 37794 lncvrat 37796 lncmp 37797 cdlemd6 38217 cdlemk19ylem 38944 pellex 40657 limcperiod 43169 itschlc0xyqsol1 46112 itschlc0xyqsol 46113 |
Copyright terms: Public domain | W3C validator |