| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7239 smo11 8333 zsupss 12896 lsmcv 21051 lspsolvlem 21052 mat2pmatghm 22617 mat2pmatmul 22618 nrmr0reg 23636 plyadd 26122 plymul 26123 coeeu 26130 ax5seglem6 28861 archiabl 33152 mdetpmtr1 33813 sseqval 34379 wsuclem 35813 btwnconn1lem1 36075 btwnconn1lem2 36076 btwnconn1lem12 36086 lshpsmreu 39102 1cvratlt 39468 llnle 39512 lvolex3N 39532 lnjatN 39774 lncvrat 39776 lncmp 39777 cdlemd6 40197 cdlemk19ylem 40924 pellex 42823 tfsconcatrn 43331 limcperiod 45626 itschlc0xyqsol1 48755 itschlc0xyqsol 48756 |
| Copyright terms: Public domain | W3C validator |