| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7193 smo11 8279 zsupss 12827 lsmcv 21071 lspsolvlem 21072 mat2pmatghm 22638 mat2pmatmul 22639 nrmr0reg 23657 plyadd 26142 plymul 26143 coeeu 26150 ax5seglem6 28905 archiabl 33157 mdetpmtr1 33826 sseqval 34391 wsuclem 35838 btwnconn1lem1 36100 btwnconn1lem2 36101 btwnconn1lem12 36111 lshpsmreu 39127 1cvratlt 39492 llnle 39536 lvolex3N 39556 lnjatN 39798 lncvrat 39800 lncmp 39801 cdlemd6 40221 cdlemk19ylem 40948 pellex 42847 tfsconcatrn 43354 limcperiod 45647 itschlc0xyqsol1 48777 itschlc0xyqsol 48778 |
| Copyright terms: Public domain | W3C validator |