| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7252 smo11 8372 zsupss 12945 lsmcv 21087 lspsolvlem 21088 mat2pmatghm 22653 mat2pmatmul 22654 nrmr0reg 23672 plyadd 26159 plymul 26160 coeeu 26167 ax5seglem6 28845 archiabl 33114 mdetpmtr1 33762 sseqval 34328 wsuclem 35764 btwnconn1lem1 36026 btwnconn1lem2 36027 btwnconn1lem12 36037 lshpsmreu 39048 1cvratlt 39414 llnle 39458 lvolex3N 39478 lnjatN 39720 lncvrat 39722 lncmp 39723 cdlemd6 40143 cdlemk19ylem 40870 pellex 42783 tfsconcatrn 43291 limcperiod 45587 itschlc0xyqsol1 48632 itschlc0xyqsol 48633 |
| Copyright terms: Public domain | W3C validator |