![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: f1imass 7274 smo11 8385 zsupss 12952 lsmcv 21029 lspsolvlem 21030 mat2pmatghm 22645 mat2pmatmul 22646 nrmr0reg 23666 plyadd 26164 plymul 26165 coeeu 26172 ax5seglem6 28758 archiabl 32919 mdetpmtr1 33424 sseqval 34008 wsuclem 35421 btwnconn1lem1 35683 btwnconn1lem2 35684 btwnconn1lem12 35694 lshpsmreu 38581 1cvratlt 38947 llnle 38991 lvolex3N 39011 lnjatN 39253 lncvrat 39255 lncmp 39256 cdlemd6 39676 cdlemk19ylem 40403 pellex 42255 tfsconcatrn 42771 limcperiod 45016 itschlc0xyqsol1 47839 itschlc0xyqsol 47840 |
Copyright terms: Public domain | W3C validator |