![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: f1imass 7301 smo11 8420 zsupss 13002 lsmcv 21166 lspsolvlem 21167 mat2pmatghm 22757 mat2pmatmul 22758 nrmr0reg 23778 plyadd 26276 plymul 26277 coeeu 26284 ax5seglem6 28967 archiabl 33178 mdetpmtr1 33769 sseqval 34353 wsuclem 35789 btwnconn1lem1 36051 btwnconn1lem2 36052 btwnconn1lem12 36062 lshpsmreu 39065 1cvratlt 39431 llnle 39475 lvolex3N 39495 lnjatN 39737 lncvrat 39739 lncmp 39740 cdlemd6 40160 cdlemk19ylem 40887 pellex 42791 tfsconcatrn 43304 limcperiod 45549 itschlc0xyqsol1 48500 itschlc0xyqsol 48501 |
Copyright terms: Public domain | W3C validator |