Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 769 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: f1imass 7118 smo11 8166 zsupss 12606 lsmcv 20318 lspsolvlem 20319 mat2pmatghm 21787 mat2pmatmul 21788 nrmr0reg 22808 plyadd 25283 plymul 25284 coeeu 25291 ax5seglem6 27205 archiabl 31354 mdetpmtr1 31675 sseqval 32255 wsuclem 33746 btwnconn1lem1 34316 btwnconn1lem2 34317 btwnconn1lem12 34327 lshpsmreu 37050 1cvratlt 37415 llnle 37459 lvolex3N 37479 lnjatN 37721 lncvrat 37723 lncmp 37724 cdlemd6 38144 cdlemk19ylem 38871 pellex 40573 limcperiod 43059 itschlc0xyqsol1 46000 itschlc0xyqsol 46001 |
Copyright terms: Public domain | W3C validator |