Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 770 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: f1imass 7130 smo11 8183 zsupss 12665 lsmcv 20391 lspsolvlem 20392 mat2pmatghm 21867 mat2pmatmul 21868 nrmr0reg 22888 plyadd 25366 plymul 25367 coeeu 25374 ax5seglem6 27290 archiabl 31438 mdetpmtr1 31759 sseqval 32341 wsuclem 33805 btwnconn1lem1 34375 btwnconn1lem2 34376 btwnconn1lem12 34386 lshpsmreu 37109 1cvratlt 37474 llnle 37518 lvolex3N 37538 lnjatN 37780 lncvrat 37782 lncmp 37783 cdlemd6 38203 cdlemk19ylem 38930 pellex 40643 limcperiod 43128 itschlc0xyqsol1 46068 itschlc0xyqsol 46069 |
Copyright terms: Public domain | W3C validator |