| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7207 smo11 8293 zsupss 12845 lsmcv 21088 lspsolvlem 21089 mat2pmatghm 22655 mat2pmatmul 22656 nrmr0reg 23674 plyadd 26159 plymul 26160 coeeu 26167 ax5seglem6 28923 archiabl 33178 mdetpmtr1 33847 sseqval 34412 wsuclem 35878 btwnconn1lem1 36142 btwnconn1lem2 36143 btwnconn1lem12 36153 lshpsmreu 39218 1cvratlt 39583 llnle 39627 lvolex3N 39647 lnjatN 39889 lncvrat 39891 lncmp 39892 cdlemd6 40312 cdlemk19ylem 41039 pellex 42942 tfsconcatrn 43449 limcperiod 45742 itschlc0xyqsol1 48881 itschlc0xyqsol 48882 |
| Copyright terms: Public domain | W3C validator |