| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7205 smo11 8294 zsupss 12856 lsmcv 21066 lspsolvlem 21067 mat2pmatghm 22633 mat2pmatmul 22634 nrmr0reg 23652 plyadd 26138 plymul 26139 coeeu 26146 ax5seglem6 28897 archiabl 33150 mdetpmtr1 33789 sseqval 34355 wsuclem 35798 btwnconn1lem1 36060 btwnconn1lem2 36061 btwnconn1lem12 36071 lshpsmreu 39087 1cvratlt 39453 llnle 39497 lvolex3N 39517 lnjatN 39759 lncvrat 39761 lncmp 39762 cdlemd6 40182 cdlemk19ylem 40909 pellex 42808 tfsconcatrn 43315 limcperiod 45610 itschlc0xyqsol1 48739 itschlc0xyqsol 48740 |
| Copyright terms: Public domain | W3C validator |