| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7257 smo11 8378 zsupss 12953 lsmcv 21102 lspsolvlem 21103 mat2pmatghm 22668 mat2pmatmul 22669 nrmr0reg 23687 plyadd 26174 plymul 26175 coeeu 26182 ax5seglem6 28913 archiabl 33196 mdetpmtr1 33854 sseqval 34420 wsuclem 35843 btwnconn1lem1 36105 btwnconn1lem2 36106 btwnconn1lem12 36116 lshpsmreu 39127 1cvratlt 39493 llnle 39537 lvolex3N 39557 lnjatN 39799 lncvrat 39801 lncmp 39802 cdlemd6 40222 cdlemk19ylem 40949 pellex 42858 tfsconcatrn 43366 limcperiod 45657 itschlc0xyqsol1 48746 itschlc0xyqsol 48747 |
| Copyright terms: Public domain | W3C validator |