![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 773 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: f1imass 7284 smo11 8403 zsupss 12977 lsmcv 21161 lspsolvlem 21162 mat2pmatghm 22752 mat2pmatmul 22753 nrmr0reg 23773 plyadd 26271 plymul 26272 coeeu 26279 ax5seglem6 28964 archiabl 33188 mdetpmtr1 33784 sseqval 34370 wsuclem 35807 btwnconn1lem1 36069 btwnconn1lem2 36070 btwnconn1lem12 36080 lshpsmreu 39091 1cvratlt 39457 llnle 39501 lvolex3N 39521 lnjatN 39763 lncvrat 39765 lncmp 39766 cdlemd6 40186 cdlemk19ylem 40913 pellex 42823 tfsconcatrn 43332 limcperiod 45584 itschlc0xyqsol1 48616 itschlc0xyqsol 48617 |
Copyright terms: Public domain | W3C validator |