| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: f1imass 7242 smo11 8336 zsupss 12903 lsmcv 21058 lspsolvlem 21059 mat2pmatghm 22624 mat2pmatmul 22625 nrmr0reg 23643 plyadd 26129 plymul 26130 coeeu 26137 ax5seglem6 28868 archiabl 33159 mdetpmtr1 33820 sseqval 34386 wsuclem 35820 btwnconn1lem1 36082 btwnconn1lem2 36083 btwnconn1lem12 36093 lshpsmreu 39109 1cvratlt 39475 llnle 39519 lvolex3N 39539 lnjatN 39781 lncvrat 39783 lncmp 39784 cdlemd6 40204 cdlemk19ylem 40931 pellex 42830 tfsconcatrn 43338 limcperiod 45633 itschlc0xyqsol1 48759 itschlc0xyqsol 48760 |
| Copyright terms: Public domain | W3C validator |