Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdetpmtr1 Structured version   Visualization version   GIF version

Theorem mdetpmtr1 33859
Description: The determinant of a matrix with permuted rows is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
mdetpmtr.a 𝐴 = (𝑁 Mat 𝑅)
mdetpmtr.b 𝐵 = (Base‘𝐴)
mdetpmtr.d 𝐷 = (𝑁 maDet 𝑅)
mdetpmtr.g 𝐺 = (Base‘(SymGrp‘𝑁))
mdetpmtr.s 𝑆 = (pmSgn‘𝑁)
mdetpmtr.z 𝑍 = (ℤRHom‘𝑅)
mdetpmtr.t · = (.r𝑅)
mdetpmtr1.e 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗))
Assertion
Ref Expression
mdetpmtr1 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷𝐸)))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐺,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑆(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetpmtr1
Dummy variables 𝑝 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2733 . . 3 (0g𝑅) = (0g𝑅)
3 mdetpmtr.t . . 3 · = (.r𝑅)
4 crngring 20167 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
54ad2antrr 726 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑅 ∈ Ring)
6 mdetpmtr.g . . . . 5 𝐺 = (Base‘(SymGrp‘𝑁))
76fvexi 6844 . . . 4 𝐺 ∈ V
87a1i 11 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝐺 ∈ V)
9 simplr 768 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑁 ∈ Fin)
10 mdetpmtr.s . . . . . . 7 𝑆 = (pmSgn‘𝑁)
1110, 6psgndmfi 33076 . . . . . 6 (𝑁 ∈ Fin → 𝑆 Fn 𝐺)
12 fnfun 6588 . . . . . 6 (𝑆 Fn 𝐺 → Fun 𝑆)
139, 11, 123syl 18 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → Fun 𝑆)
14 simprr 772 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑃𝐺)
15 fndm 6591 . . . . . . 7 (𝑆 Fn 𝐺 → dom 𝑆 = 𝐺)
169, 11, 153syl 18 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → dom 𝑆 = 𝐺)
1714, 16eleqtrrd 2836 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑃 ∈ dom 𝑆)
18 fvco 6928 . . . . 5 ((Fun 𝑆𝑃 ∈ dom 𝑆) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
1913, 17, 18syl2anc 584 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
20 mdetpmtr.z . . . . . 6 𝑍 = (ℤRHom‘𝑅)
216, 10, 20zrhpsgnelbas 21535 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑃𝐺) → (𝑍‘(𝑆𝑃)) ∈ (Base‘𝑅))
225, 9, 14, 21syl3anc 1373 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑍‘(𝑆𝑃)) ∈ (Base‘𝑅))
2319, 22eqeltrd 2833 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
245adantr 480 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑅 ∈ Ring)
256, 10cofipsgn 21534 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑝) = (𝑍‘(𝑆𝑝)))
269, 25sylan 580 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑝) = (𝑍‘(𝑆𝑝)))
27 simpllr 775 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑁 ∈ Fin)
28 simpr 484 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑝𝐺)
296, 10, 20zrhpsgnelbas 21535 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝𝐺) → (𝑍‘(𝑆𝑝)) ∈ (Base‘𝑅))
3024, 27, 28, 29syl3anc 1373 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑍‘(𝑆𝑝)) ∈ (Base‘𝑅))
3126, 30eqeltrd 2833 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑝) ∈ (Base‘𝑅))
32 eqid 2733 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3332, 1mgpbas 20067 . . . . 5 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
3432crngmgp 20163 . . . . . 6 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
3534ad3antrrr 730 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (mulGrp‘𝑅) ∈ CMnd)
36 mdetpmtr.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
37 mdetpmtr.b . . . . . . 7 𝐵 = (Base‘𝐴)
38 eqid 2733 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3938, 6symgfv 19296 . . . . . . . 8 ((𝑝𝐺𝑥𝑁) → (𝑝𝑥) ∈ 𝑁)
4039adantll 714 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → (𝑝𝑥) ∈ 𝑁)
41 simpr 484 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → 𝑥𝑁)
42 mdetpmtr1.e . . . . . . . . 9 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗))
43 simpll 766 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑅 ∈ CRing)
44 simp1rr 1240 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃𝐺)
45 simp2 1137 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
4638, 6symgfv 19296 . . . . . . . . . . . 12 ((𝑃𝐺𝑖𝑁) → (𝑃𝑖) ∈ 𝑁)
4744, 45, 46syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → (𝑃𝑖) ∈ 𝑁)
48 simp3 1138 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
49 simp1rl 1239 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀𝐵)
5036, 1, 37, 47, 48, 49matecld 22344 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑃𝑖)𝑀𝑗) ∈ (Base‘𝑅))
5136, 1, 37, 9, 43, 50matbas2d 22341 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗)) ∈ 𝐵)
5242, 51eqeltrid 2837 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝐸𝐵)
5352ad2antrr 726 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → 𝐸𝐵)
5436, 1, 37, 40, 41, 53matecld 22344 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → ((𝑝𝑥)𝐸𝑥) ∈ (Base‘𝑅))
5554ralrimiva 3125 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ∀𝑥𝑁 ((𝑝𝑥)𝐸𝑥) ∈ (Base‘𝑅))
5633, 35, 27, 55gsummptcl 19883 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))) ∈ (Base‘𝑅))
571, 3ringcl 20172 . . . 4 ((𝑅 ∈ Ring ∧ ((𝑍𝑆)‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))) ∈ (Base‘𝑅)) → (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) ∈ (Base‘𝑅))
5824, 31, 56, 57syl3anc 1373 . . 3 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) ∈ (Base‘𝑅))
59 eqid 2733 . . . 4 (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))) = (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))))
6038, 6symgbasfi 19295 . . . . 5 (𝑁 ∈ Fin → 𝐺 ∈ Fin)
619, 60syl 17 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝐺 ∈ Fin)
62 ovexd 7389 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) ∈ V)
63 fvexd 6845 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (0g𝑅) ∈ V)
6459, 61, 62, 63fsuppmptdm 9269 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))) finSupp (0g𝑅))
651, 2, 3, 5, 8, 23, 58, 64gsummulc2 20239 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))) = (((𝑍𝑆)‘𝑃) · (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))))
66 nfcv 2895 . . . 4 𝑞(((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥))))
67 fveq2 6830 . . . . 5 (𝑞 = (𝑃𝑝) → ((𝑍𝑆)‘𝑞) = ((𝑍𝑆)‘(𝑃𝑝)))
68 fveq1 6829 . . . . . . . 8 (𝑞 = (𝑃𝑝) → (𝑞𝑥) = ((𝑃𝑝)‘𝑥))
6968oveq1d 7369 . . . . . . 7 (𝑞 = (𝑃𝑝) → ((𝑞𝑥)𝑀𝑥) = (((𝑃𝑝)‘𝑥)𝑀𝑥))
7069mpteq2dv 5189 . . . . . 6 (𝑞 = (𝑃𝑝) → (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)) = (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))
7170oveq2d 7370 . . . . 5 (𝑞 = (𝑃𝑝) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥))) = ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥))))
7267, 71oveq12d 7372 . . . 4 (𝑞 = (𝑃𝑝) → (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))) = (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))
73 ringcmn 20204 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
745, 73syl 17 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑅 ∈ CMnd)
75 ssidd 3954 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (Base‘𝑅) ⊆ (Base‘𝑅))
765adantr 480 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → 𝑅 ∈ Ring)
776, 10cofipsgn 21534 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑞𝐺) → ((𝑍𝑆)‘𝑞) = (𝑍‘(𝑆𝑞)))
789, 77sylan 580 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ((𝑍𝑆)‘𝑞) = (𝑍‘(𝑆𝑞)))
79 simpllr 775 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → 𝑁 ∈ Fin)
80 simpr 484 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → 𝑞𝐺)
816, 10, 20zrhpsgnelbas 21535 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑞𝐺) → (𝑍‘(𝑆𝑞)) ∈ (Base‘𝑅))
8276, 79, 80, 81syl3anc 1373 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → (𝑍‘(𝑆𝑞)) ∈ (Base‘𝑅))
8378, 82eqeltrd 2833 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ((𝑍𝑆)‘𝑞) ∈ (Base‘𝑅))
8434ad3antrrr 730 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → (mulGrp‘𝑅) ∈ CMnd)
8538, 6symgfv 19296 . . . . . . . . 9 ((𝑞𝐺𝑥𝑁) → (𝑞𝑥) ∈ 𝑁)
8685adantll 714 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) ∧ 𝑥𝑁) → (𝑞𝑥) ∈ 𝑁)
87 simpr 484 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) ∧ 𝑥𝑁) → 𝑥𝑁)
88 simprl 770 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑀𝐵)
8988ad2antrr 726 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) ∧ 𝑥𝑁) → 𝑀𝐵)
9036, 1, 37, 86, 87, 89matecld 22344 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) ∧ 𝑥𝑁) → ((𝑞𝑥)𝑀𝑥) ∈ (Base‘𝑅))
9190ralrimiva 3125 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ∀𝑥𝑁 ((𝑞𝑥)𝑀𝑥) ∈ (Base‘𝑅))
9233, 84, 79, 91gsummptcl 19883 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥))) ∈ (Base‘𝑅))
931, 3ringcl 20172 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑍𝑆)‘𝑞) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥))) ∈ (Base‘𝑅)) → (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))) ∈ (Base‘𝑅))
9476, 83, 92, 93syl3anc 1373 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))) ∈ (Base‘𝑅))
95 eqid 2733 . . . . . . 7 (+g‘(SymGrp‘𝑁)) = (+g‘(SymGrp‘𝑁))
9638, 6, 95symgov 19300 . . . . . 6 ((𝑃𝐺𝑝𝐺) → (𝑃(+g‘(SymGrp‘𝑁))𝑝) = (𝑃𝑝))
9738, 6, 95symgcl 19301 . . . . . 6 ((𝑃𝐺𝑝𝐺) → (𝑃(+g‘(SymGrp‘𝑁))𝑝) ∈ 𝐺)
9896, 97eqeltrrd 2834 . . . . 5 ((𝑃𝐺𝑝𝐺) → (𝑃𝑝) ∈ 𝐺)
9914, 98sylan 580 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑃𝑝) ∈ 𝐺)
10014adantr 480 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → 𝑃𝐺)
1016symgfcoeu 33060 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑃𝐺𝑞𝐺) → ∃!𝑝𝐺 𝑞 = (𝑃𝑝))
10279, 100, 80, 101syl3anc 1373 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ∃!𝑝𝐺 𝑞 = (𝑃𝑝))
10366, 1, 2, 72, 74, 61, 75, 94, 99, 102gsummptf1o 19879 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑅 Σg (𝑞𝐺 ↦ (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))))) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))))
104 mdetpmtr.d . . . . 5 𝐷 = (𝑁 maDet 𝑅)
105104, 36, 37, 6, 20, 10, 3, 32mdetleib 22505 . . . 4 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑞𝐺 ↦ (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))))))
106105ad2antrl 728 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (𝑅 Σg (𝑞𝐺 ↦ (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))))))
10723adantr 480 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
1081, 3ringass 20175 . . . . . . 7 ((𝑅 ∈ Ring ∧ (((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅) ∧ ((𝑍𝑆)‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))) ∈ (Base‘𝑅))) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))
10924, 107, 31, 56, 108syl13anc 1374 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))
11019adantr 480 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
111110, 26oveq12d 7372 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑝))))
1126, 10cofipsgn 21534 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ (𝑃𝑝) ∈ 𝐺) → ((𝑍𝑆)‘(𝑃𝑝)) = (𝑍‘(𝑆‘(𝑃𝑝))))
11327, 99, 112syl2anc 584 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘(𝑃𝑝)) = (𝑍‘(𝑆‘(𝑃𝑝))))
11414adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑃𝐺)
11538, 10, 6psgnco 21524 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃𝐺𝑝𝐺) → (𝑆‘(𝑃𝑝)) = ((𝑆𝑃) · (𝑆𝑝)))
11627, 114, 28, 115syl3anc 1373 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆‘(𝑃𝑝)) = ((𝑆𝑃) · (𝑆𝑝)))
117116fveq2d 6834 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑍‘(𝑆‘(𝑃𝑝))) = (𝑍‘((𝑆𝑃) · (𝑆𝑝))))
11820zrhrhm 21452 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑍 ∈ (ℤring RingHom 𝑅))
1195, 118syl 17 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑍 ∈ (ℤring RingHom 𝑅))
120119adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑍 ∈ (ℤring RingHom 𝑅))
121 1z 12510 . . . . . . . . . . . 12 1 ∈ ℤ
122 neg1z 12516 . . . . . . . . . . . 12 -1 ∈ ℤ
123 prssi 4774 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ)
124121, 122, 123mp2an 692 . . . . . . . . . . 11 {1, -1} ⊆ ℤ
1256, 10psgnran 19431 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑃𝐺) → (𝑆𝑃) ∈ {1, -1})
12627, 114, 125syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆𝑃) ∈ {1, -1})
127124, 126sselid 3928 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆𝑃) ∈ ℤ)
1286, 10psgnran 19431 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑝𝐺) → (𝑆𝑝) ∈ {1, -1})
1299, 128sylan 580 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆𝑝) ∈ {1, -1})
130124, 129sselid 3928 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆𝑝) ∈ ℤ)
131 zringbas 21394 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
132 zringmulr 21398 . . . . . . . . . . 11 · = (.r‘ℤring)
133131, 132, 3rhmmul 20407 . . . . . . . . . 10 ((𝑍 ∈ (ℤring RingHom 𝑅) ∧ (𝑆𝑃) ∈ ℤ ∧ (𝑆𝑝) ∈ ℤ) → (𝑍‘((𝑆𝑃) · (𝑆𝑝))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑝))))
134120, 127, 130, 133syl3anc 1373 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑍‘((𝑆𝑃) · (𝑆𝑝))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑝))))
135113, 117, 1343eqtrrd 2773 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑝))) = ((𝑍𝑆)‘(𝑃𝑝)))
136111, 135eqtrd 2768 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) = ((𝑍𝑆)‘(𝑃𝑝)))
13742a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗)))
138 simprl 770 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑖 = (𝑝𝑥))
139138fveq2d 6834 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → (𝑃𝑖) = (𝑃‘(𝑝𝑥)))
140 simpllr 775 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑝𝐺)
14138, 6symgbasf 19292 . . . . . . . . . . . . . 14 (𝑝𝐺𝑝:𝑁𝑁)
142 ffun 6661 . . . . . . . . . . . . . 14 (𝑝:𝑁𝑁 → Fun 𝑝)
143140, 141, 1423syl 18 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → Fun 𝑝)
144 simplr 768 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑥𝑁)
145 fdm 6667 . . . . . . . . . . . . . . 15 (𝑝:𝑁𝑁 → dom 𝑝 = 𝑁)
146140, 141, 1453syl 18 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → dom 𝑝 = 𝑁)
147144, 146eleqtrrd 2836 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑥 ∈ dom 𝑝)
148 fvco 6928 . . . . . . . . . . . . 13 ((Fun 𝑝𝑥 ∈ dom 𝑝) → ((𝑃𝑝)‘𝑥) = (𝑃‘(𝑝𝑥)))
149143, 147, 148syl2anc 584 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → ((𝑃𝑝)‘𝑥) = (𝑃‘(𝑝𝑥)))
150139, 149eqtr4d 2771 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → (𝑃𝑖) = ((𝑃𝑝)‘𝑥))
151 simprr 772 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑗 = 𝑥)
152150, 151oveq12d 7372 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → ((𝑃𝑖)𝑀𝑗) = (((𝑃𝑝)‘𝑥)𝑀𝑥))
153 ovexd 7389 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → (((𝑃𝑝)‘𝑥)𝑀𝑥) ∈ V)
154137, 152, 40, 41, 153ovmpod 7506 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → ((𝑝𝑥)𝐸𝑥) = (((𝑃𝑝)‘𝑥)𝑀𝑥))
155154mpteq2dva 5188 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)) = (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))
156155oveq2d 7370 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))) = ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥))))
157136, 156oveq12d 7372 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) = (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))
158109, 157eqtr3d 2770 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))) = (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))
159158mpteq2dva 5188 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))))) = (𝑝𝐺 ↦ (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥))))))
160159oveq2d 7370 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))))
161103, 106, 1603eqtr4d 2778 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))))
162104, 36, 37, 6, 20, 10, 3, 32mdetleib 22505 . . . 4 (𝐸𝐵 → (𝐷𝐸) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))))))
16352, 162syl 17 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝐸) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))))))
164163oveq2d 7370 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (((𝑍𝑆)‘𝑃) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑃) · (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))))
16565, 161, 1643eqtr4d 2778 1 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  ∃!wreu 3345  Vcvv 3437  wss 3898  {cpr 4579  cmpt 5176  dom cdm 5621  ccom 5625  Fun wfun 6482   Fn wfn 6483  wf 6484  cfv 6488  (class class class)co 7354  cmpo 7356  Fincfn 8877  1c1 11016   · cmul 11020  -cneg 11354  cz 12477  Basecbs 17124  +gcplusg 17165  .rcmulr 17166  0gc0g 17347   Σg cgsu 17348  SymGrpcsymg 19285  pmSgncpsgn 19405  CMndccmn 19696  mulGrpcmgp 20062  Ringcrg 20155  CRingccrg 20156   RingHom crh 20391  ringczring 21387  ℤRHomczrh 21440   Mat cmat 22325   maDet cmdat 22502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-addf 11094  ax-mulf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-sup 9335  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-xnn0 12464  df-z 12478  df-dec 12597  df-uz 12741  df-rp 12895  df-fz 13412  df-fzo 13559  df-seq 13913  df-exp 13973  df-hash 14242  df-word 14425  df-lsw 14474  df-concat 14482  df-s1 14508  df-substr 14553  df-pfx 14583  df-splice 14661  df-reverse 14670  df-s2 14759  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-0g 17349  df-gsum 17350  df-prds 17355  df-pws 17357  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-efmnd 18781  df-grp 18853  df-minusg 18854  df-mulg 18985  df-subg 19040  df-ghm 19129  df-gim 19175  df-cntz 19233  df-oppg 19262  df-symg 19286  df-pmtr 19358  df-psgn 19407  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-cring 20158  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-dvr 20323  df-rhm 20394  df-subrng 20465  df-subrg 20489  df-drng 20650  df-sra 21111  df-rgmod 21112  df-cnfld 21296  df-zring 21388  df-zrh 21444  df-dsmm 21673  df-frlm 21688  df-mat 22326  df-mdet 22503
This theorem is referenced by:  mdetpmtr2  33860  mdetpmtr12  33861
  Copyright terms: Public domain W3C validator