Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdetpmtr1 Structured version   Visualization version   GIF version

Theorem mdetpmtr1 33834
Description: The determinant of a matrix with permuted rows is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
mdetpmtr.a 𝐴 = (𝑁 Mat 𝑅)
mdetpmtr.b 𝐵 = (Base‘𝐴)
mdetpmtr.d 𝐷 = (𝑁 maDet 𝑅)
mdetpmtr.g 𝐺 = (Base‘(SymGrp‘𝑁))
mdetpmtr.s 𝑆 = (pmSgn‘𝑁)
mdetpmtr.z 𝑍 = (ℤRHom‘𝑅)
mdetpmtr.t · = (.r𝑅)
mdetpmtr1.e 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗))
Assertion
Ref Expression
mdetpmtr1 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷𝐸)))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐺,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑆(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetpmtr1
Dummy variables 𝑝 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2731 . . 3 (0g𝑅) = (0g𝑅)
3 mdetpmtr.t . . 3 · = (.r𝑅)
4 crngring 20164 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
54ad2antrr 726 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑅 ∈ Ring)
6 mdetpmtr.g . . . . 5 𝐺 = (Base‘(SymGrp‘𝑁))
76fvexi 6836 . . . 4 𝐺 ∈ V
87a1i 11 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝐺 ∈ V)
9 simplr 768 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑁 ∈ Fin)
10 mdetpmtr.s . . . . . . 7 𝑆 = (pmSgn‘𝑁)
1110, 6psgndmfi 33065 . . . . . 6 (𝑁 ∈ Fin → 𝑆 Fn 𝐺)
12 fnfun 6581 . . . . . 6 (𝑆 Fn 𝐺 → Fun 𝑆)
139, 11, 123syl 18 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → Fun 𝑆)
14 simprr 772 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑃𝐺)
15 fndm 6584 . . . . . . 7 (𝑆 Fn 𝐺 → dom 𝑆 = 𝐺)
169, 11, 153syl 18 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → dom 𝑆 = 𝐺)
1714, 16eleqtrrd 2834 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑃 ∈ dom 𝑆)
18 fvco 6920 . . . . 5 ((Fun 𝑆𝑃 ∈ dom 𝑆) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
1913, 17, 18syl2anc 584 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
20 mdetpmtr.z . . . . . 6 𝑍 = (ℤRHom‘𝑅)
216, 10, 20zrhpsgnelbas 21532 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑃𝐺) → (𝑍‘(𝑆𝑃)) ∈ (Base‘𝑅))
225, 9, 14, 21syl3anc 1373 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑍‘(𝑆𝑃)) ∈ (Base‘𝑅))
2319, 22eqeltrd 2831 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
245adantr 480 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑅 ∈ Ring)
256, 10cofipsgn 21531 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑝) = (𝑍‘(𝑆𝑝)))
269, 25sylan 580 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑝) = (𝑍‘(𝑆𝑝)))
27 simpllr 775 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑁 ∈ Fin)
28 simpr 484 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑝𝐺)
296, 10, 20zrhpsgnelbas 21532 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝𝐺) → (𝑍‘(𝑆𝑝)) ∈ (Base‘𝑅))
3024, 27, 28, 29syl3anc 1373 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑍‘(𝑆𝑝)) ∈ (Base‘𝑅))
3126, 30eqeltrd 2831 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑝) ∈ (Base‘𝑅))
32 eqid 2731 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3332, 1mgpbas 20064 . . . . 5 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
3432crngmgp 20160 . . . . . 6 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
3534ad3antrrr 730 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (mulGrp‘𝑅) ∈ CMnd)
36 mdetpmtr.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
37 mdetpmtr.b . . . . . . 7 𝐵 = (Base‘𝐴)
38 eqid 2731 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3938, 6symgfv 19293 . . . . . . . 8 ((𝑝𝐺𝑥𝑁) → (𝑝𝑥) ∈ 𝑁)
4039adantll 714 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → (𝑝𝑥) ∈ 𝑁)
41 simpr 484 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → 𝑥𝑁)
42 mdetpmtr1.e . . . . . . . . 9 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗))
43 simpll 766 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑅 ∈ CRing)
44 simp1rr 1240 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃𝐺)
45 simp2 1137 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
4638, 6symgfv 19293 . . . . . . . . . . . 12 ((𝑃𝐺𝑖𝑁) → (𝑃𝑖) ∈ 𝑁)
4744, 45, 46syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → (𝑃𝑖) ∈ 𝑁)
48 simp3 1138 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
49 simp1rl 1239 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀𝐵)
5036, 1, 37, 47, 48, 49matecld 22342 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑃𝑖)𝑀𝑗) ∈ (Base‘𝑅))
5136, 1, 37, 9, 43, 50matbas2d 22339 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗)) ∈ 𝐵)
5242, 51eqeltrid 2835 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝐸𝐵)
5352ad2antrr 726 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → 𝐸𝐵)
5436, 1, 37, 40, 41, 53matecld 22342 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → ((𝑝𝑥)𝐸𝑥) ∈ (Base‘𝑅))
5554ralrimiva 3124 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ∀𝑥𝑁 ((𝑝𝑥)𝐸𝑥) ∈ (Base‘𝑅))
5633, 35, 27, 55gsummptcl 19880 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))) ∈ (Base‘𝑅))
571, 3ringcl 20169 . . . 4 ((𝑅 ∈ Ring ∧ ((𝑍𝑆)‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))) ∈ (Base‘𝑅)) → (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) ∈ (Base‘𝑅))
5824, 31, 56, 57syl3anc 1373 . . 3 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) ∈ (Base‘𝑅))
59 eqid 2731 . . . 4 (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))) = (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))))
6038, 6symgbasfi 19292 . . . . 5 (𝑁 ∈ Fin → 𝐺 ∈ Fin)
619, 60syl 17 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝐺 ∈ Fin)
62 ovexd 7381 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) ∈ V)
63 fvexd 6837 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (0g𝑅) ∈ V)
6459, 61, 62, 63fsuppmptdm 9260 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))) finSupp (0g𝑅))
651, 2, 3, 5, 8, 23, 58, 64gsummulc2 20236 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))) = (((𝑍𝑆)‘𝑃) · (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))))
66 nfcv 2894 . . . 4 𝑞(((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥))))
67 fveq2 6822 . . . . 5 (𝑞 = (𝑃𝑝) → ((𝑍𝑆)‘𝑞) = ((𝑍𝑆)‘(𝑃𝑝)))
68 fveq1 6821 . . . . . . . 8 (𝑞 = (𝑃𝑝) → (𝑞𝑥) = ((𝑃𝑝)‘𝑥))
6968oveq1d 7361 . . . . . . 7 (𝑞 = (𝑃𝑝) → ((𝑞𝑥)𝑀𝑥) = (((𝑃𝑝)‘𝑥)𝑀𝑥))
7069mpteq2dv 5185 . . . . . 6 (𝑞 = (𝑃𝑝) → (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)) = (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))
7170oveq2d 7362 . . . . 5 (𝑞 = (𝑃𝑝) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥))) = ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥))))
7267, 71oveq12d 7364 . . . 4 (𝑞 = (𝑃𝑝) → (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))) = (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))
73 ringcmn 20201 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
745, 73syl 17 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑅 ∈ CMnd)
75 ssidd 3958 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (Base‘𝑅) ⊆ (Base‘𝑅))
765adantr 480 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → 𝑅 ∈ Ring)
776, 10cofipsgn 21531 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑞𝐺) → ((𝑍𝑆)‘𝑞) = (𝑍‘(𝑆𝑞)))
789, 77sylan 580 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ((𝑍𝑆)‘𝑞) = (𝑍‘(𝑆𝑞)))
79 simpllr 775 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → 𝑁 ∈ Fin)
80 simpr 484 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → 𝑞𝐺)
816, 10, 20zrhpsgnelbas 21532 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑞𝐺) → (𝑍‘(𝑆𝑞)) ∈ (Base‘𝑅))
8276, 79, 80, 81syl3anc 1373 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → (𝑍‘(𝑆𝑞)) ∈ (Base‘𝑅))
8378, 82eqeltrd 2831 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ((𝑍𝑆)‘𝑞) ∈ (Base‘𝑅))
8434ad3antrrr 730 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → (mulGrp‘𝑅) ∈ CMnd)
8538, 6symgfv 19293 . . . . . . . . 9 ((𝑞𝐺𝑥𝑁) → (𝑞𝑥) ∈ 𝑁)
8685adantll 714 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) ∧ 𝑥𝑁) → (𝑞𝑥) ∈ 𝑁)
87 simpr 484 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) ∧ 𝑥𝑁) → 𝑥𝑁)
88 simprl 770 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑀𝐵)
8988ad2antrr 726 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) ∧ 𝑥𝑁) → 𝑀𝐵)
9036, 1, 37, 86, 87, 89matecld 22342 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) ∧ 𝑥𝑁) → ((𝑞𝑥)𝑀𝑥) ∈ (Base‘𝑅))
9190ralrimiva 3124 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ∀𝑥𝑁 ((𝑞𝑥)𝑀𝑥) ∈ (Base‘𝑅))
9233, 84, 79, 91gsummptcl 19880 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥))) ∈ (Base‘𝑅))
931, 3ringcl 20169 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑍𝑆)‘𝑞) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥))) ∈ (Base‘𝑅)) → (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))) ∈ (Base‘𝑅))
9476, 83, 92, 93syl3anc 1373 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))) ∈ (Base‘𝑅))
95 eqid 2731 . . . . . . 7 (+g‘(SymGrp‘𝑁)) = (+g‘(SymGrp‘𝑁))
9638, 6, 95symgov 19297 . . . . . 6 ((𝑃𝐺𝑝𝐺) → (𝑃(+g‘(SymGrp‘𝑁))𝑝) = (𝑃𝑝))
9738, 6, 95symgcl 19298 . . . . . 6 ((𝑃𝐺𝑝𝐺) → (𝑃(+g‘(SymGrp‘𝑁))𝑝) ∈ 𝐺)
9896, 97eqeltrrd 2832 . . . . 5 ((𝑃𝐺𝑝𝐺) → (𝑃𝑝) ∈ 𝐺)
9914, 98sylan 580 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑃𝑝) ∈ 𝐺)
10014adantr 480 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → 𝑃𝐺)
1016symgfcoeu 33049 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑃𝐺𝑞𝐺) → ∃!𝑝𝐺 𝑞 = (𝑃𝑝))
10279, 100, 80, 101syl3anc 1373 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ∃!𝑝𝐺 𝑞 = (𝑃𝑝))
10366, 1, 2, 72, 74, 61, 75, 94, 99, 102gsummptf1o 19876 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑅 Σg (𝑞𝐺 ↦ (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))))) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))))
104 mdetpmtr.d . . . . 5 𝐷 = (𝑁 maDet 𝑅)
105104, 36, 37, 6, 20, 10, 3, 32mdetleib 22503 . . . 4 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑞𝐺 ↦ (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))))))
106105ad2antrl 728 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (𝑅 Σg (𝑞𝐺 ↦ (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))))))
10723adantr 480 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
1081, 3ringass 20172 . . . . . . 7 ((𝑅 ∈ Ring ∧ (((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅) ∧ ((𝑍𝑆)‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))) ∈ (Base‘𝑅))) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))
10924, 107, 31, 56, 108syl13anc 1374 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))
11019adantr 480 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
111110, 26oveq12d 7364 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑝))))
1126, 10cofipsgn 21531 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ (𝑃𝑝) ∈ 𝐺) → ((𝑍𝑆)‘(𝑃𝑝)) = (𝑍‘(𝑆‘(𝑃𝑝))))
11327, 99, 112syl2anc 584 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘(𝑃𝑝)) = (𝑍‘(𝑆‘(𝑃𝑝))))
11414adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑃𝐺)
11538, 10, 6psgnco 21521 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃𝐺𝑝𝐺) → (𝑆‘(𝑃𝑝)) = ((𝑆𝑃) · (𝑆𝑝)))
11627, 114, 28, 115syl3anc 1373 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆‘(𝑃𝑝)) = ((𝑆𝑃) · (𝑆𝑝)))
117116fveq2d 6826 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑍‘(𝑆‘(𝑃𝑝))) = (𝑍‘((𝑆𝑃) · (𝑆𝑝))))
11820zrhrhm 21449 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑍 ∈ (ℤring RingHom 𝑅))
1195, 118syl 17 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑍 ∈ (ℤring RingHom 𝑅))
120119adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑍 ∈ (ℤring RingHom 𝑅))
121 1z 12502 . . . . . . . . . . . 12 1 ∈ ℤ
122 neg1z 12508 . . . . . . . . . . . 12 -1 ∈ ℤ
123 prssi 4773 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ)
124121, 122, 123mp2an 692 . . . . . . . . . . 11 {1, -1} ⊆ ℤ
1256, 10psgnran 19428 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑃𝐺) → (𝑆𝑃) ∈ {1, -1})
12627, 114, 125syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆𝑃) ∈ {1, -1})
127124, 126sselid 3932 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆𝑃) ∈ ℤ)
1286, 10psgnran 19428 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑝𝐺) → (𝑆𝑝) ∈ {1, -1})
1299, 128sylan 580 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆𝑝) ∈ {1, -1})
130124, 129sselid 3932 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆𝑝) ∈ ℤ)
131 zringbas 21391 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
132 zringmulr 21395 . . . . . . . . . . 11 · = (.r‘ℤring)
133131, 132, 3rhmmul 20404 . . . . . . . . . 10 ((𝑍 ∈ (ℤring RingHom 𝑅) ∧ (𝑆𝑃) ∈ ℤ ∧ (𝑆𝑝) ∈ ℤ) → (𝑍‘((𝑆𝑃) · (𝑆𝑝))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑝))))
134120, 127, 130, 133syl3anc 1373 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑍‘((𝑆𝑃) · (𝑆𝑝))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑝))))
135113, 117, 1343eqtrrd 2771 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑝))) = ((𝑍𝑆)‘(𝑃𝑝)))
136111, 135eqtrd 2766 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) = ((𝑍𝑆)‘(𝑃𝑝)))
13742a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗)))
138 simprl 770 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑖 = (𝑝𝑥))
139138fveq2d 6826 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → (𝑃𝑖) = (𝑃‘(𝑝𝑥)))
140 simpllr 775 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑝𝐺)
14138, 6symgbasf 19289 . . . . . . . . . . . . . 14 (𝑝𝐺𝑝:𝑁𝑁)
142 ffun 6654 . . . . . . . . . . . . . 14 (𝑝:𝑁𝑁 → Fun 𝑝)
143140, 141, 1423syl 18 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → Fun 𝑝)
144 simplr 768 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑥𝑁)
145 fdm 6660 . . . . . . . . . . . . . . 15 (𝑝:𝑁𝑁 → dom 𝑝 = 𝑁)
146140, 141, 1453syl 18 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → dom 𝑝 = 𝑁)
147144, 146eleqtrrd 2834 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑥 ∈ dom 𝑝)
148 fvco 6920 . . . . . . . . . . . . 13 ((Fun 𝑝𝑥 ∈ dom 𝑝) → ((𝑃𝑝)‘𝑥) = (𝑃‘(𝑝𝑥)))
149143, 147, 148syl2anc 584 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → ((𝑃𝑝)‘𝑥) = (𝑃‘(𝑝𝑥)))
150139, 149eqtr4d 2769 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → (𝑃𝑖) = ((𝑃𝑝)‘𝑥))
151 simprr 772 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑗 = 𝑥)
152150, 151oveq12d 7364 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → ((𝑃𝑖)𝑀𝑗) = (((𝑃𝑝)‘𝑥)𝑀𝑥))
153 ovexd 7381 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → (((𝑃𝑝)‘𝑥)𝑀𝑥) ∈ V)
154137, 152, 40, 41, 153ovmpod 7498 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → ((𝑝𝑥)𝐸𝑥) = (((𝑃𝑝)‘𝑥)𝑀𝑥))
155154mpteq2dva 5184 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)) = (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))
156155oveq2d 7362 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))) = ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥))))
157136, 156oveq12d 7364 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) = (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))
158109, 157eqtr3d 2768 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))) = (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))
159158mpteq2dva 5184 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))))) = (𝑝𝐺 ↦ (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥))))))
160159oveq2d 7362 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))))
161103, 106, 1603eqtr4d 2776 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))))
162104, 36, 37, 6, 20, 10, 3, 32mdetleib 22503 . . . 4 (𝐸𝐵 → (𝐷𝐸) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))))))
16352, 162syl 17 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝐸) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))))))
164163oveq2d 7362 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (((𝑍𝑆)‘𝑃) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑃) · (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))))
16565, 161, 1643eqtr4d 2776 1 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  ∃!wreu 3344  Vcvv 3436  wss 3902  {cpr 4578  cmpt 5172  dom cdm 5616  ccom 5620  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  Fincfn 8869  1c1 11007   · cmul 11011  -cneg 11345  cz 12468  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343   Σg cgsu 17344  SymGrpcsymg 19282  pmSgncpsgn 19402  CMndccmn 19693  mulGrpcmgp 20059  Ringcrg 20152  CRingccrg 20153   RingHom crh 20388  ringczring 21384  ℤRHomczrh 21437   Mat cmat 22323   maDet cmdat 22500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-splice 14657  df-reverse 14666  df-s2 14755  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-efmnd 18777  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-ghm 19126  df-gim 19172  df-cntz 19230  df-oppg 19259  df-symg 19283  df-pmtr 19355  df-psgn 19404  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-cring 20155  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-rhm 20391  df-subrng 20462  df-subrg 20486  df-drng 20647  df-sra 21108  df-rgmod 21109  df-cnfld 21293  df-zring 21385  df-zrh 21441  df-dsmm 21670  df-frlm 21685  df-mat 22324  df-mdet 22501
This theorem is referenced by:  mdetpmtr2  33835  mdetpmtr12  33836
  Copyright terms: Public domain W3C validator