Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdetpmtr1 Structured version   Visualization version   GIF version

Theorem mdetpmtr1 33854
Description: The determinant of a matrix with permuted rows is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
mdetpmtr.a 𝐴 = (𝑁 Mat 𝑅)
mdetpmtr.b 𝐵 = (Base‘𝐴)
mdetpmtr.d 𝐷 = (𝑁 maDet 𝑅)
mdetpmtr.g 𝐺 = (Base‘(SymGrp‘𝑁))
mdetpmtr.s 𝑆 = (pmSgn‘𝑁)
mdetpmtr.z 𝑍 = (ℤRHom‘𝑅)
mdetpmtr.t · = (.r𝑅)
mdetpmtr1.e 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗))
Assertion
Ref Expression
mdetpmtr1 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷𝐸)))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐺,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑆(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem mdetpmtr1
Dummy variables 𝑝 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2735 . . 3 (0g𝑅) = (0g𝑅)
3 mdetpmtr.t . . 3 · = (.r𝑅)
4 crngring 20205 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
54ad2antrr 726 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑅 ∈ Ring)
6 mdetpmtr.g . . . . 5 𝐺 = (Base‘(SymGrp‘𝑁))
76fvexi 6890 . . . 4 𝐺 ∈ V
87a1i 11 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝐺 ∈ V)
9 simplr 768 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑁 ∈ Fin)
10 mdetpmtr.s . . . . . . 7 𝑆 = (pmSgn‘𝑁)
1110, 6psgndmfi 33109 . . . . . 6 (𝑁 ∈ Fin → 𝑆 Fn 𝐺)
12 fnfun 6638 . . . . . 6 (𝑆 Fn 𝐺 → Fun 𝑆)
139, 11, 123syl 18 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → Fun 𝑆)
14 simprr 772 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑃𝐺)
15 fndm 6641 . . . . . . 7 (𝑆 Fn 𝐺 → dom 𝑆 = 𝐺)
169, 11, 153syl 18 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → dom 𝑆 = 𝐺)
1714, 16eleqtrrd 2837 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑃 ∈ dom 𝑆)
18 fvco 6977 . . . . 5 ((Fun 𝑆𝑃 ∈ dom 𝑆) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
1913, 17, 18syl2anc 584 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
20 mdetpmtr.z . . . . . 6 𝑍 = (ℤRHom‘𝑅)
216, 10, 20zrhpsgnelbas 21554 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑃𝐺) → (𝑍‘(𝑆𝑃)) ∈ (Base‘𝑅))
225, 9, 14, 21syl3anc 1373 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑍‘(𝑆𝑃)) ∈ (Base‘𝑅))
2319, 22eqeltrd 2834 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
245adantr 480 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑅 ∈ Ring)
256, 10cofipsgn 21553 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑝) = (𝑍‘(𝑆𝑝)))
269, 25sylan 580 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑝) = (𝑍‘(𝑆𝑝)))
27 simpllr 775 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑁 ∈ Fin)
28 simpr 484 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑝𝐺)
296, 10, 20zrhpsgnelbas 21554 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝𝐺) → (𝑍‘(𝑆𝑝)) ∈ (Base‘𝑅))
3024, 27, 28, 29syl3anc 1373 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑍‘(𝑆𝑝)) ∈ (Base‘𝑅))
3126, 30eqeltrd 2834 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑝) ∈ (Base‘𝑅))
32 eqid 2735 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3332, 1mgpbas 20105 . . . . 5 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
3432crngmgp 20201 . . . . . 6 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
3534ad3antrrr 730 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (mulGrp‘𝑅) ∈ CMnd)
36 mdetpmtr.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
37 mdetpmtr.b . . . . . . 7 𝐵 = (Base‘𝐴)
38 eqid 2735 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3938, 6symgfv 19361 . . . . . . . 8 ((𝑝𝐺𝑥𝑁) → (𝑝𝑥) ∈ 𝑁)
4039adantll 714 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → (𝑝𝑥) ∈ 𝑁)
41 simpr 484 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → 𝑥𝑁)
42 mdetpmtr1.e . . . . . . . . 9 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗))
43 simpll 766 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑅 ∈ CRing)
44 simp1rr 1240 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃𝐺)
45 simp2 1137 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
4638, 6symgfv 19361 . . . . . . . . . . . 12 ((𝑃𝐺𝑖𝑁) → (𝑃𝑖) ∈ 𝑁)
4744, 45, 46syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → (𝑃𝑖) ∈ 𝑁)
48 simp3 1138 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
49 simp1rl 1239 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀𝐵)
5036, 1, 37, 47, 48, 49matecld 22364 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑃𝑖)𝑀𝑗) ∈ (Base‘𝑅))
5136, 1, 37, 9, 43, 50matbas2d 22361 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗)) ∈ 𝐵)
5242, 51eqeltrid 2838 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝐸𝐵)
5352ad2antrr 726 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → 𝐸𝐵)
5436, 1, 37, 40, 41, 53matecld 22364 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → ((𝑝𝑥)𝐸𝑥) ∈ (Base‘𝑅))
5554ralrimiva 3132 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ∀𝑥𝑁 ((𝑝𝑥)𝐸𝑥) ∈ (Base‘𝑅))
5633, 35, 27, 55gsummptcl 19948 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))) ∈ (Base‘𝑅))
571, 3ringcl 20210 . . . 4 ((𝑅 ∈ Ring ∧ ((𝑍𝑆)‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))) ∈ (Base‘𝑅)) → (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) ∈ (Base‘𝑅))
5824, 31, 56, 57syl3anc 1373 . . 3 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) ∈ (Base‘𝑅))
59 eqid 2735 . . . 4 (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))) = (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))))
6038, 6symgbasfi 19360 . . . . 5 (𝑁 ∈ Fin → 𝐺 ∈ Fin)
619, 60syl 17 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝐺 ∈ Fin)
62 ovexd 7440 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) ∈ V)
63 fvexd 6891 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (0g𝑅) ∈ V)
6459, 61, 62, 63fsuppmptdm 9388 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))) finSupp (0g𝑅))
651, 2, 3, 5, 8, 23, 58, 64gsummulc2 20277 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))) = (((𝑍𝑆)‘𝑃) · (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))))
66 nfcv 2898 . . . 4 𝑞(((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥))))
67 fveq2 6876 . . . . 5 (𝑞 = (𝑃𝑝) → ((𝑍𝑆)‘𝑞) = ((𝑍𝑆)‘(𝑃𝑝)))
68 fveq1 6875 . . . . . . . 8 (𝑞 = (𝑃𝑝) → (𝑞𝑥) = ((𝑃𝑝)‘𝑥))
6968oveq1d 7420 . . . . . . 7 (𝑞 = (𝑃𝑝) → ((𝑞𝑥)𝑀𝑥) = (((𝑃𝑝)‘𝑥)𝑀𝑥))
7069mpteq2dv 5215 . . . . . 6 (𝑞 = (𝑃𝑝) → (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)) = (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))
7170oveq2d 7421 . . . . 5 (𝑞 = (𝑃𝑝) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥))) = ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥))))
7267, 71oveq12d 7423 . . . 4 (𝑞 = (𝑃𝑝) → (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))) = (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))
73 ringcmn 20242 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
745, 73syl 17 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑅 ∈ CMnd)
75 ssidd 3982 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (Base‘𝑅) ⊆ (Base‘𝑅))
765adantr 480 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → 𝑅 ∈ Ring)
776, 10cofipsgn 21553 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑞𝐺) → ((𝑍𝑆)‘𝑞) = (𝑍‘(𝑆𝑞)))
789, 77sylan 580 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ((𝑍𝑆)‘𝑞) = (𝑍‘(𝑆𝑞)))
79 simpllr 775 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → 𝑁 ∈ Fin)
80 simpr 484 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → 𝑞𝐺)
816, 10, 20zrhpsgnelbas 21554 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑞𝐺) → (𝑍‘(𝑆𝑞)) ∈ (Base‘𝑅))
8276, 79, 80, 81syl3anc 1373 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → (𝑍‘(𝑆𝑞)) ∈ (Base‘𝑅))
8378, 82eqeltrd 2834 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ((𝑍𝑆)‘𝑞) ∈ (Base‘𝑅))
8434ad3antrrr 730 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → (mulGrp‘𝑅) ∈ CMnd)
8538, 6symgfv 19361 . . . . . . . . 9 ((𝑞𝐺𝑥𝑁) → (𝑞𝑥) ∈ 𝑁)
8685adantll 714 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) ∧ 𝑥𝑁) → (𝑞𝑥) ∈ 𝑁)
87 simpr 484 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) ∧ 𝑥𝑁) → 𝑥𝑁)
88 simprl 770 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑀𝐵)
8988ad2antrr 726 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) ∧ 𝑥𝑁) → 𝑀𝐵)
9036, 1, 37, 86, 87, 89matecld 22364 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) ∧ 𝑥𝑁) → ((𝑞𝑥)𝑀𝑥) ∈ (Base‘𝑅))
9190ralrimiva 3132 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ∀𝑥𝑁 ((𝑞𝑥)𝑀𝑥) ∈ (Base‘𝑅))
9233, 84, 79, 91gsummptcl 19948 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥))) ∈ (Base‘𝑅))
931, 3ringcl 20210 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑍𝑆)‘𝑞) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥))) ∈ (Base‘𝑅)) → (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))) ∈ (Base‘𝑅))
9476, 83, 92, 93syl3anc 1373 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))) ∈ (Base‘𝑅))
95 eqid 2735 . . . . . . 7 (+g‘(SymGrp‘𝑁)) = (+g‘(SymGrp‘𝑁))
9638, 6, 95symgov 19365 . . . . . 6 ((𝑃𝐺𝑝𝐺) → (𝑃(+g‘(SymGrp‘𝑁))𝑝) = (𝑃𝑝))
9738, 6, 95symgcl 19366 . . . . . 6 ((𝑃𝐺𝑝𝐺) → (𝑃(+g‘(SymGrp‘𝑁))𝑝) ∈ 𝐺)
9896, 97eqeltrrd 2835 . . . . 5 ((𝑃𝐺𝑝𝐺) → (𝑃𝑝) ∈ 𝐺)
9914, 98sylan 580 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑃𝑝) ∈ 𝐺)
10014adantr 480 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → 𝑃𝐺)
1016symgfcoeu 33093 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑃𝐺𝑞𝐺) → ∃!𝑝𝐺 𝑞 = (𝑃𝑝))
10279, 100, 80, 101syl3anc 1373 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑞𝐺) → ∃!𝑝𝐺 𝑞 = (𝑃𝑝))
10366, 1, 2, 72, 74, 61, 75, 94, 99, 102gsummptf1o 19944 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑅 Σg (𝑞𝐺 ↦ (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))))) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))))
104 mdetpmtr.d . . . . 5 𝐷 = (𝑁 maDet 𝑅)
105104, 36, 37, 6, 20, 10, 3, 32mdetleib 22525 . . . 4 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑞𝐺 ↦ (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))))))
106105ad2antrl 728 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (𝑅 Σg (𝑞𝐺 ↦ (((𝑍𝑆)‘𝑞) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑞𝑥)𝑀𝑥)))))))
10723adantr 480 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅))
1081, 3ringass 20213 . . . . . . 7 ((𝑅 ∈ Ring ∧ (((𝑍𝑆)‘𝑃) ∈ (Base‘𝑅) ∧ ((𝑍𝑆)‘𝑝) ∈ (Base‘𝑅) ∧ ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))) ∈ (Base‘𝑅))) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))
10924, 107, 31, 56, 108syl13anc 1374 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) = (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))
11019adantr 480 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘𝑃) = (𝑍‘(𝑆𝑃)))
111110, 26oveq12d 7423 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑝))))
1126, 10cofipsgn 21553 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ (𝑃𝑝) ∈ 𝐺) → ((𝑍𝑆)‘(𝑃𝑝)) = (𝑍‘(𝑆‘(𝑃𝑝))))
11327, 99, 112syl2anc 584 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍𝑆)‘(𝑃𝑝)) = (𝑍‘(𝑆‘(𝑃𝑝))))
11414adantr 480 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑃𝐺)
11538, 10, 6psgnco 21543 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃𝐺𝑝𝐺) → (𝑆‘(𝑃𝑝)) = ((𝑆𝑃) · (𝑆𝑝)))
11627, 114, 28, 115syl3anc 1373 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆‘(𝑃𝑝)) = ((𝑆𝑃) · (𝑆𝑝)))
117116fveq2d 6880 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑍‘(𝑆‘(𝑃𝑝))) = (𝑍‘((𝑆𝑃) · (𝑆𝑝))))
11820zrhrhm 21472 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑍 ∈ (ℤring RingHom 𝑅))
1195, 118syl 17 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → 𝑍 ∈ (ℤring RingHom 𝑅))
120119adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → 𝑍 ∈ (ℤring RingHom 𝑅))
121 1z 12622 . . . . . . . . . . . 12 1 ∈ ℤ
122 neg1z 12628 . . . . . . . . . . . 12 -1 ∈ ℤ
123 prssi 4797 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ)
124121, 122, 123mp2an 692 . . . . . . . . . . 11 {1, -1} ⊆ ℤ
1256, 10psgnran 19496 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑃𝐺) → (𝑆𝑃) ∈ {1, -1})
12627, 114, 125syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆𝑃) ∈ {1, -1})
127124, 126sselid 3956 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆𝑃) ∈ ℤ)
1286, 10psgnran 19496 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑝𝐺) → (𝑆𝑝) ∈ {1, -1})
1299, 128sylan 580 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆𝑝) ∈ {1, -1})
130124, 129sselid 3956 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑆𝑝) ∈ ℤ)
131 zringbas 21414 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
132 zringmulr 21418 . . . . . . . . . . 11 · = (.r‘ℤring)
133131, 132, 3rhmmul 20446 . . . . . . . . . 10 ((𝑍 ∈ (ℤring RingHom 𝑅) ∧ (𝑆𝑃) ∈ ℤ ∧ (𝑆𝑝) ∈ ℤ) → (𝑍‘((𝑆𝑃) · (𝑆𝑝))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑝))))
134120, 127, 130, 133syl3anc 1373 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑍‘((𝑆𝑃) · (𝑆𝑝))) = ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑝))))
135113, 117, 1343eqtrrd 2775 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((𝑍‘(𝑆𝑃)) · (𝑍‘(𝑆𝑝))) = ((𝑍𝑆)‘(𝑃𝑝)))
136111, 135eqtrd 2770 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) = ((𝑍𝑆)‘(𝑃𝑝)))
13742a1i 11 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → 𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗)))
138 simprl 770 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑖 = (𝑝𝑥))
139138fveq2d 6880 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → (𝑃𝑖) = (𝑃‘(𝑝𝑥)))
140 simpllr 775 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑝𝐺)
14138, 6symgbasf 19357 . . . . . . . . . . . . . 14 (𝑝𝐺𝑝:𝑁𝑁)
142 ffun 6709 . . . . . . . . . . . . . 14 (𝑝:𝑁𝑁 → Fun 𝑝)
143140, 141, 1423syl 18 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → Fun 𝑝)
144 simplr 768 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑥𝑁)
145 fdm 6715 . . . . . . . . . . . . . . 15 (𝑝:𝑁𝑁 → dom 𝑝 = 𝑁)
146140, 141, 1453syl 18 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → dom 𝑝 = 𝑁)
147144, 146eleqtrrd 2837 . . . . . . . . . . . . 13 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑥 ∈ dom 𝑝)
148 fvco 6977 . . . . . . . . . . . . 13 ((Fun 𝑝𝑥 ∈ dom 𝑝) → ((𝑃𝑝)‘𝑥) = (𝑃‘(𝑝𝑥)))
149143, 147, 148syl2anc 584 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → ((𝑃𝑝)‘𝑥) = (𝑃‘(𝑝𝑥)))
150139, 149eqtr4d 2773 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → (𝑃𝑖) = ((𝑃𝑝)‘𝑥))
151 simprr 772 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → 𝑗 = 𝑥)
152150, 151oveq12d 7423 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) ∧ (𝑖 = (𝑝𝑥) ∧ 𝑗 = 𝑥)) → ((𝑃𝑖)𝑀𝑗) = (((𝑃𝑝)‘𝑥)𝑀𝑥))
153 ovexd 7440 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → (((𝑃𝑝)‘𝑥)𝑀𝑥) ∈ V)
154137, 152, 40, 41, 153ovmpod 7559 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) ∧ 𝑥𝑁) → ((𝑝𝑥)𝐸𝑥) = (((𝑃𝑝)‘𝑥)𝑀𝑥))
155154mpteq2dva 5214 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)) = (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))
156155oveq2d 7421 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))) = ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥))))
157136, 156oveq12d 7423 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → ((((𝑍𝑆)‘𝑃) · ((𝑍𝑆)‘𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))) = (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))
158109, 157eqtr3d 2772 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) ∧ 𝑝𝐺) → (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))) = (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))
159158mpteq2dva 5214 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))))) = (𝑝𝐺 ↦ (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥))))))
160159oveq2d 7421 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘(𝑃𝑝)) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ (((𝑃𝑝)‘𝑥)𝑀𝑥)))))))
161103, 106, 1603eqtr4d 2780 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑃) · (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))))
162104, 36, 37, 6, 20, 10, 3, 32mdetleib 22525 . . . 4 (𝐸𝐵 → (𝐷𝐸) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))))))
16352, 162syl 17 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝐸) = (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥)))))))
164163oveq2d 7421 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (((𝑍𝑆)‘𝑃) · (𝐷𝐸)) = (((𝑍𝑆)‘𝑃) · (𝑅 Σg (𝑝𝐺 ↦ (((𝑍𝑆)‘𝑝) · ((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝐸𝑥))))))))
16565, 161, 1643eqtr4d 2780 1 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  ∃!wreu 3357  Vcvv 3459  wss 3926  {cpr 4603  cmpt 5201  dom cdm 5654  ccom 5658  Fun wfun 6525   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  Fincfn 8959  1c1 11130   · cmul 11134  -cneg 11467  cz 12588  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  0gc0g 17453   Σg cgsu 17454  SymGrpcsymg 19350  pmSgncpsgn 19470  CMndccmn 19761  mulGrpcmgp 20100  Ringcrg 20193  CRingccrg 20194   RingHom crh 20429  ringczring 21407  ℤRHomczrh 21460   Mat cmat 22345   maDet cmdat 22522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-splice 14768  df-reverse 14777  df-s2 14867  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-efmnd 18847  df-grp 18919  df-minusg 18920  df-mulg 19051  df-subg 19106  df-ghm 19196  df-gim 19242  df-cntz 19300  df-oppg 19329  df-symg 19351  df-pmtr 19423  df-psgn 19472  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-sra 21131  df-rgmod 21132  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-dsmm 21692  df-frlm 21707  df-mat 22346  df-mdet 22523
This theorem is referenced by:  mdetpmtr2  33855  mdetpmtr12  33856
  Copyright terms: Public domain W3C validator