MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsupss Structured version   Visualization version   GIF version

Theorem zsupss 12325
Description: Any nonempty bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-sup 10604.) (Contributed by Mario Carneiro, 21-Apr-2015.)
Assertion
Ref Expression
zsupss ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑦,𝑧)

Proof of Theorem zsupss
Dummy variables 𝑚 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5033 . . . . . 6 (𝑦 = 𝑚 → (𝑦𝑥𝑚𝑥))
21cbvralvw 3396 . . . . 5 (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑥)
3 breq2 5034 . . . . . 6 (𝑥 = 𝑛 → (𝑚𝑥𝑚𝑛))
43ralbidv 3162 . . . . 5 (𝑥 = 𝑛 → (∀𝑚𝐴 𝑚𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
52, 4syl5bb 286 . . . 4 (𝑥 = 𝑛 → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
65cbvrexvw 3397 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛)
7 simp1rl 1235 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℤ)
87znegcld 12077 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛 ∈ ℤ)
9 simp2 1134 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℤ)
109zred 12075 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℝ)
117zred 12075 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℝ)
12 breq1 5033 . . . . . . . . . . 11 (𝑚 = -𝑤 → (𝑚𝑛 ↔ -𝑤𝑛))
13 simp1rr 1236 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → ∀𝑚𝐴 𝑚𝑛)
14 simp3 1135 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝐴)
1512, 13, 14rspcdva 3573 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝑛)
1610, 11, 15lenegcon1d 11211 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛𝑤)
17 eluz2 12237 . . . . . . . . 9 (𝑤 ∈ (ℤ‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ -𝑛𝑤))
188, 9, 16, 17syl3anbrc 1340 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ (ℤ‘-𝑛))
1918rabssdv 4002 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛))
20 n0 4260 . . . . . . . . . 10 (𝐴 ≠ ∅ ↔ ∃𝑛 𝑛𝐴)
21 ssel2 3910 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℤ)
2221znegcld 12077 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → -𝑛 ∈ ℤ)
2321zcnd 12076 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℂ)
2423negnegd 10977 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → --𝑛 = 𝑛)
25 simpr 488 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛𝐴)
2624, 25eqeltrd 2890 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → --𝑛𝐴)
27 negeq 10867 . . . . . . . . . . . . . . . 16 (𝑤 = -𝑛 → -𝑤 = --𝑛)
2827eleq1d 2874 . . . . . . . . . . . . . . 15 (𝑤 = -𝑛 → (-𝑤𝐴 ↔ --𝑛𝐴))
2928rspcev 3571 . . . . . . . . . . . . . 14 ((-𝑛 ∈ ℤ ∧ --𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3022, 26, 29syl2anc 587 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3130ex 416 . . . . . . . . . . . 12 (𝐴 ⊆ ℤ → (𝑛𝐴 → ∃𝑤 ∈ ℤ -𝑤𝐴))
3231exlimdv 1934 . . . . . . . . . . 11 (𝐴 ⊆ ℤ → (∃𝑛 𝑛𝐴 → ∃𝑤 ∈ ℤ -𝑤𝐴))
3332imp 410 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ ∃𝑛 𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3420, 33sylan2b 596 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3534adantr 484 . . . . . . . 8 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑤 ∈ ℤ -𝑤𝐴)
36 rabn0 4293 . . . . . . . 8 ({𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅ ↔ ∃𝑤 ∈ ℤ -𝑤𝐴)
3735, 36sylibr 237 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅)
38 infssuzcl 12320 . . . . . . 7 (({𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛) ∧ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
3919, 37, 38syl2anc 587 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
40 negeq 10867 . . . . . . . . 9 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → -𝑛 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
4140eleq1d 2874 . . . . . . . 8 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (-𝑛𝐴 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
42 negeq 10867 . . . . . . . . . 10 (𝑤 = 𝑛 → -𝑤 = -𝑛)
4342eleq1d 2874 . . . . . . . . 9 (𝑤 = 𝑛 → (-𝑤𝐴 ↔ -𝑛𝐴))
4443cbvrabv 3439 . . . . . . . 8 {𝑤 ∈ ℤ ∣ -𝑤𝐴} = {𝑛 ∈ ℤ ∣ -𝑛𝐴}
4541, 44elrab2 3631 . . . . . . 7 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ↔ (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ ∧ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
4645simprbi 500 . . . . . 6 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
4739, 46syl 17 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
48 simpll 766 . . . . . . . . 9 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → 𝐴 ⊆ ℤ)
4948sselda 3915 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℤ)
5049zred 12075 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
51 ssrab2 4007 . . . . . . . . . 10 {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ ℤ
5239adantr 484 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
5351, 52sseldi 3913 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ)
5453znegcld 12077 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ)
5554zred 12075 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
5653zred 12075 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
5719adantr 484 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛))
58 negeq 10867 . . . . . . . . . . 11 (𝑤 = -𝑦 → -𝑤 = --𝑦)
5958eleq1d 2874 . . . . . . . . . 10 (𝑤 = -𝑦 → (-𝑤𝐴 ↔ --𝑦𝐴))
6049znegcld 12077 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -𝑦 ∈ ℤ)
6149zcnd 12076 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℂ)
6261negnegd 10977 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → --𝑦 = 𝑦)
63 simpr 488 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦𝐴)
6462, 63eqeltrd 2890 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → --𝑦𝐴)
6559, 60, 64elrabd 3630 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
66 infssuzle 12319 . . . . . . . . 9 (({𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛) ∧ -𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴}) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑦)
6757, 65, 66syl2anc 587 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑦)
6856, 50, 67lenegcon2d 11212 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ≤ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
6950, 55, 68lensymd 10780 . . . . . 6 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
7069ralrimiva 3149 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
71 breq2 5034 . . . . . . . . 9 (𝑧 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑧𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
7271rspcev 3571 . . . . . . . 8 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )) → ∃𝑧𝐴 𝑦 < 𝑧)
7372ex 416 . . . . . . 7 (-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
7447, 73syl 17 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
7574ralrimivw 3150 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
76 breq1 5033 . . . . . . . . 9 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑥 < 𝑦 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
7776notbid 321 . . . . . . . 8 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (¬ 𝑥 < 𝑦 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
7877ralbidv 3162 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
79 breq2 5034 . . . . . . . . 9 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑥𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
8079imbi1d 345 . . . . . . . 8 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
8180ralbidv 3162 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
8278, 81anbi12d 633 . . . . . 6 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))))
8382rspcev 3571 . . . . 5 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 ∧ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8447, 70, 75, 83syl12anc 835 . . . 4 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8584rexlimdvaa 3244 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → (∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
866, 85syl5bi 245 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
87863impia 1114 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  wss 3881  c0 4243   class class class wbr 5030  cfv 6324  infcinf 8889  cr 10525   < clt 10664  cle 10665  -cneg 10860  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232
This theorem is referenced by:  suprzcl2  12326  suprzub  12327  uzsupss  12328
  Copyright terms: Public domain W3C validator