MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsupss Structured version   Visualization version   GIF version

Theorem zsupss 12329
Description: Any nonempty bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-sup 10607.) (Contributed by Mario Carneiro, 21-Apr-2015.)
Assertion
Ref Expression
zsupss ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑦,𝑧)

Proof of Theorem zsupss
Dummy variables 𝑚 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5060 . . . . . 6 (𝑦 = 𝑚 → (𝑦𝑥𝑚𝑥))
21cbvralvw 3448 . . . . 5 (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑥)
3 breq2 5061 . . . . . 6 (𝑥 = 𝑛 → (𝑚𝑥𝑚𝑛))
43ralbidv 3195 . . . . 5 (𝑥 = 𝑛 → (∀𝑚𝐴 𝑚𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
52, 4syl5bb 285 . . . 4 (𝑥 = 𝑛 → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
65cbvrexvw 3449 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛)
7 simp1rl 1233 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℤ)
87znegcld 12081 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛 ∈ ℤ)
9 simp2 1132 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℤ)
109zred 12079 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℝ)
117zred 12079 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℝ)
12 breq1 5060 . . . . . . . . . . 11 (𝑚 = -𝑤 → (𝑚𝑛 ↔ -𝑤𝑛))
13 simp1rr 1234 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → ∀𝑚𝐴 𝑚𝑛)
14 simp3 1133 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝐴)
1512, 13, 14rspcdva 3623 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝑛)
1610, 11, 15lenegcon1d 11214 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛𝑤)
17 eluz2 12241 . . . . . . . . 9 (𝑤 ∈ (ℤ‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ -𝑛𝑤))
188, 9, 16, 17syl3anbrc 1338 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ (ℤ‘-𝑛))
1918rabssdv 4049 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛))
20 n0 4308 . . . . . . . . . 10 (𝐴 ≠ ∅ ↔ ∃𝑛 𝑛𝐴)
21 ssel2 3960 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℤ)
2221znegcld 12081 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → -𝑛 ∈ ℤ)
2321zcnd 12080 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℂ)
2423negnegd 10980 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → --𝑛 = 𝑛)
25 simpr 487 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛𝐴)
2624, 25eqeltrd 2911 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → --𝑛𝐴)
27 negeq 10870 . . . . . . . . . . . . . . . 16 (𝑤 = -𝑛 → -𝑤 = --𝑛)
2827eleq1d 2895 . . . . . . . . . . . . . . 15 (𝑤 = -𝑛 → (-𝑤𝐴 ↔ --𝑛𝐴))
2928rspcev 3621 . . . . . . . . . . . . . 14 ((-𝑛 ∈ ℤ ∧ --𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3022, 26, 29syl2anc 586 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3130ex 415 . . . . . . . . . . . 12 (𝐴 ⊆ ℤ → (𝑛𝐴 → ∃𝑤 ∈ ℤ -𝑤𝐴))
3231exlimdv 1928 . . . . . . . . . . 11 (𝐴 ⊆ ℤ → (∃𝑛 𝑛𝐴 → ∃𝑤 ∈ ℤ -𝑤𝐴))
3332imp 409 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ ∃𝑛 𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3420, 33sylan2b 595 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3534adantr 483 . . . . . . . 8 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑤 ∈ ℤ -𝑤𝐴)
36 rabn0 4337 . . . . . . . 8 ({𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅ ↔ ∃𝑤 ∈ ℤ -𝑤𝐴)
3735, 36sylibr 236 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅)
38 infssuzcl 12324 . . . . . . 7 (({𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛) ∧ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
3919, 37, 38syl2anc 586 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
40 negeq 10870 . . . . . . . . 9 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → -𝑛 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
4140eleq1d 2895 . . . . . . . 8 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (-𝑛𝐴 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
42 negeq 10870 . . . . . . . . . 10 (𝑤 = 𝑛 → -𝑤 = -𝑛)
4342eleq1d 2895 . . . . . . . . 9 (𝑤 = 𝑛 → (-𝑤𝐴 ↔ -𝑛𝐴))
4443cbvrabv 3490 . . . . . . . 8 {𝑤 ∈ ℤ ∣ -𝑤𝐴} = {𝑛 ∈ ℤ ∣ -𝑛𝐴}
4541, 44elrab2 3681 . . . . . . 7 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ↔ (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ ∧ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
4645simprbi 499 . . . . . 6 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
4739, 46syl 17 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
48 simpll 765 . . . . . . . . 9 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → 𝐴 ⊆ ℤ)
4948sselda 3965 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℤ)
5049zred 12079 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
51 ssrab2 4054 . . . . . . . . . 10 {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ ℤ
5239adantr 483 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
5351, 52sseldi 3963 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ)
5453znegcld 12081 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ)
5554zred 12079 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
5653zred 12079 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
5719adantr 483 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛))
58 negeq 10870 . . . . . . . . . . 11 (𝑤 = -𝑦 → -𝑤 = --𝑦)
5958eleq1d 2895 . . . . . . . . . 10 (𝑤 = -𝑦 → (-𝑤𝐴 ↔ --𝑦𝐴))
6049znegcld 12081 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -𝑦 ∈ ℤ)
6149zcnd 12080 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℂ)
6261negnegd 10980 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → --𝑦 = 𝑦)
63 simpr 487 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦𝐴)
6462, 63eqeltrd 2911 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → --𝑦𝐴)
6559, 60, 64elrabd 3680 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
66 infssuzle 12323 . . . . . . . . 9 (({𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛) ∧ -𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴}) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑦)
6757, 65, 66syl2anc 586 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑦)
6856, 50, 67lenegcon2d 11215 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ≤ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
6950, 55, 68lensymd 10783 . . . . . 6 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
7069ralrimiva 3180 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
71 breq2 5061 . . . . . . . . 9 (𝑧 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑧𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
7271rspcev 3621 . . . . . . . 8 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )) → ∃𝑧𝐴 𝑦 < 𝑧)
7372ex 415 . . . . . . 7 (-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
7447, 73syl 17 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
7574ralrimivw 3181 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
76 breq1 5060 . . . . . . . . 9 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑥 < 𝑦 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
7776notbid 320 . . . . . . . 8 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (¬ 𝑥 < 𝑦 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
7877ralbidv 3195 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
79 breq2 5061 . . . . . . . . 9 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑥𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
8079imbi1d 344 . . . . . . . 8 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
8180ralbidv 3195 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
8278, 81anbi12d 632 . . . . . 6 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))))
8382rspcev 3621 . . . . 5 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 ∧ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8447, 70, 75, 83syl12anc 834 . . . 4 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8584rexlimdvaa 3283 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → (∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
866, 85syl5bi 244 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
87863impia 1112 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1082   = wceq 1531  wex 1774  wcel 2108  wne 3014  wral 3136  wrex 3137  {crab 3140  wss 3934  c0 4289   class class class wbr 5057  cfv 6348  infcinf 8897  cr 10528   < clt 10667  cle 10668  -cneg 10863  cz 11973  cuz 12235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236
This theorem is referenced by:  suprzcl2  12330  suprzub  12331  uzsupss  12332
  Copyright terms: Public domain W3C validator